These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Soy β-conglycinin improves obesity-induced metabolic abnormalities in a rat model of nonalcoholic fatty liver disease. Wanezaki S, Tachibana N, Nagata M, Saito S, Nagao K, Yanagita T, Kohno M. Obes Res Clin Pract; 2015; 9(2):168-74. PubMed ID: 25890430 [Abstract] [Full Text] [Related]
3. Beta-conglycinin lowers very-low-density lipoprotein-triglyceride levels by increasing adiponectin and insulin sensitivity in rats. Tachibana N, Iwaoka Y, Hirotsuka M, Horio F, Kohno M. Biosci Biotechnol Biochem; 2010; 74(6):1250-5. PubMed ID: 20530915 [Abstract] [Full Text] [Related]
4. Dietary β-Conglycinin Modulates Insulin Sensitivity, Body Fat Mass, and Lipid Metabolism in Obese Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Kawabeta K, Hase-Tamaru S, Yuasa M, Suruga K, Sugano M, Koba K. J Oleo Sci; 2019 Apr 01; 68(4):339-350. PubMed ID: 30867392 [Abstract] [Full Text] [Related]
5. Soy β-Conglycinin Peptide Attenuates Obesity and Lipid Abnormalities in Obese Model OLETF Rats. Wanezaki S, Saito S, Inoue N, Tachibana N, Shirouchi B, Sato M, Yanagita T, Nagao K. J Oleo Sci; 2020 Apr 01; 69(5):495-502. PubMed ID: 32378551 [Abstract] [Full Text] [Related]
6. Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein. Yamazaki T, Kishimoto K, Miura S, Ezaki O. J Nutr Biochem; 2012 Feb 01; 23(2):123-32. PubMed ID: 21447441 [Abstract] [Full Text] [Related]
7. Grape seed extract supplementation prevents high-fructose diet-induced insulin resistance in rats by improving insulin and adiponectin signalling pathways. Meeprom A, Sompong W, Suwannaphet W, Yibchok-anun S, Adisakwattana S. Br J Nutr; 2011 Oct 01; 106(8):1173-81. PubMed ID: 21736810 [Abstract] [Full Text] [Related]
8. Beneficial effects of β-conglycinin on renal function and nephrin expression in early streptozotocin-induced diabetic nephropathy rats. Yang HY, Wu LY, Yeh WJ, Chen JR. Br J Nutr; 2014 Jan 14; 111(1):78-85. PubMed ID: 23803175 [Abstract] [Full Text] [Related]
11. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, Turner N, Cooney GJ, Whitehead JP, Kraegen EW, Cleasby ME. Endocrinology; 2012 Nov 14; 153(11):5231-46. PubMed ID: 22989629 [Abstract] [Full Text] [Related]
12. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. Goto T, Teraminami A, Lee JY, Ohyama K, Funakoshi K, Kim YI, Hirai S, Uemura T, Yu R, Takahashi N, Kawada T. J Nutr Biochem; 2012 Jul 14; 23(7):768-76. PubMed ID: 21889885 [Abstract] [Full Text] [Related]
13. Soybean beta-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of beta-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Moriyama T, Kishimoto K, Nagai K, Urade R, Ogawa T, Utsumi S, Maruyama N, Maebuchi M. Biosci Biotechnol Biochem; 2004 Feb 14; 68(2):352-9. PubMed ID: 14981298 [Abstract] [Full Text] [Related]
14. Blockade of interleukin 6 signalling ameliorates systemic insulin resistance through upregulation of glucose uptake in skeletal muscle and improves hepatic steatosis in high-fat diet fed mice. Yamaguchi K, Nishimura T, Ishiba H, Seko Y, Okajima A, Fujii H, Tochiki N, Umemura A, Moriguchi M, Sumida Y, Mitsuyoshi H, Yasui K, Minami M, Okanoue T, Itoh Y. Liver Int; 2015 Feb 14; 35(2):550-61. PubMed ID: 25066281 [Abstract] [Full Text] [Related]
15. Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats. Ndisang JF, Jadhav A. Endocrinology; 2009 Jun 14; 150(6):2627-36. PubMed ID: 19228889 [Abstract] [Full Text] [Related]
16. Tormentic acid, a major component of suspension cells of Eriobotrya japonica, suppresses high-fat diet-induced diabetes and hyperlipidemia by glucose transporter 4 and AMP-activated protein kinase phosphorylation. Wu JB, Kuo YH, Lin CH, Ho HY, Shih CC. J Agric Food Chem; 2014 Nov 05; 62(44):10717-26. PubMed ID: 25317836 [Abstract] [Full Text] [Related]
17. Oxidative stress--mediated alterations in glucose dynamics in a genetic animal model of type II diabetes. Bitar MS, Al-Saleh E, Al-Mulla F. Life Sci; 2005 Sep 30; 77(20):2552-73. PubMed ID: 15936776 [Abstract] [Full Text] [Related]
18. Cardiac expression of adiponectin and its receptors in streptozotocin-induced diabetic rats. Guo Z, Xia Z, Yuen VG, McNeill JH. Metabolism; 2007 Oct 30; 56(10):1363-71. PubMed ID: 17884446 [Abstract] [Full Text] [Related]
19. The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. Lu J, Zeng Y, Hou W, Zhang S, Li L, Luo X, Xi W, Chen Z, Xiang M. J Nutr Biochem; 2012 Nov 30; 23(11):1449-57. PubMed ID: 22278080 [Abstract] [Full Text] [Related]
20. Effects of Bofu-Tsusho-San on diabetes and hyperlipidemia associated with AMP-activated protein kinase and glucose transporter 4 in high-fat-fed mice. Lin CH, Kuo YH, Shih CC. Int J Mol Sci; 2014 Nov 04; 15(11):20022-44. PubMed ID: 25375187 [Abstract] [Full Text] [Related] Page: [Next] [New Search]