These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


327 related items for PubMed ID: 24461945

  • 21. An assessment of stress analyses in the theory of abfraction.
    Litonjua LA, Andreana S, Patra AK, Cohen RE.
    Biomed Mater Eng; 2004; 14(3):311-21. PubMed ID: 15299243
    [Abstract] [Full Text] [Related]

  • 22. Biomechanical behaviour of tooth-supported fixed partial dentures by 3D FEA.
    Naveau A, Chesneau J, Barquins M, Pierrisnard L.
    Eur J Prosthodont Restor Dent; 2009 Dec; 17(4):157-63. PubMed ID: 20158056
    [Abstract] [Full Text] [Related]

  • 23. A review of the shortened dental arch concept focusing on the work by the Käyser/Nijmegen group.
    Kanno T, Carlsson GE.
    J Oral Rehabil; 2006 Nov; 33(11):850-62. PubMed ID: 17002745
    [Abstract] [Full Text] [Related]

  • 24. 3D-FEM and histomorphology of mandibular reconstruction with the titanium functionally dynamic bridging plate.
    Schuller-Götzburg P, Pleschberger M, Rammerstorfer FG, Krenkel C.
    Int J Oral Maxillofac Surg; 2009 Dec; 38(12):1298-305. PubMed ID: 19828292
    [Abstract] [Full Text] [Related]

  • 25. Chewing performance and occlusal contact area with the shortened dental arch.
    al-Ali F, Heath MR, Wright PS.
    Eur J Prosthodont Restor Dent; 1998 Sep; 6(3):127-32. PubMed ID: 10218018
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Efficacy of a posterior implant support for extra shortened dental arches: a biomechanical model analysis.
    Maeda Y, Sogo M, Tsutsumi S.
    J Oral Rehabil; 2005 Sep; 32(9):656-60. PubMed ID: 16102078
    [Abstract] [Full Text] [Related]

  • 28. Biomechanical behavior of restored and unrestored mandible with shortened dental arch under vertical loading condition.
    Tanasić I, Tihaček-Šojić L, Milić-Lemić A.
    Acta Bioeng Biomech; 2012 Sep; 14(4):31-6. PubMed ID: 23394230
    [Abstract] [Full Text] [Related]

  • 29. Tooth displacement due to occlusal contacts: a three-dimensional finite element study.
    Gomes de Oliveira S, Seraidarian PI, Landre J, Oliveira DD, Cavalcanti BN.
    J Oral Rehabil; 2006 Dec; 33(12):874-80. PubMed ID: 17168929
    [Abstract] [Full Text] [Related]

  • 30. Influence of crown ferrule heights and dowel material selection on the mechanical behavior of root-filled teeth: a finite element analysis.
    Watanabe MU, Anchieta RB, Rocha EP, Kina S, Almeida EO, Freitas AC, Basting RT.
    J Prosthodont; 2012 Jun; 21(4):304-11. PubMed ID: 22372913
    [Abstract] [Full Text] [Related]

  • 31. Creation of a three-dimensional model of the mandible and the TMJ in vivo by means of the finite element method.
    Castaño MC, Zapata U, Pedroza A, Jaramillo JD, Roldán S.
    Int J Comput Dent; 2002 Jun; 5(2-3):87-99. PubMed ID: 12680039
    [Abstract] [Full Text] [Related]

  • 32. Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis.
    Poiate IA, de Vasconcellos AB, de Santana RB, Poiate E.
    J Periodontol; 2009 Nov; 80(11):1859-67. PubMed ID: 19905956
    [Abstract] [Full Text] [Related]

  • 33. Relationships between the size and spatial morphology of human masseter and medial pterygoid muscles, the craniofacial skeleton, and jaw biomechanics.
    Hannam AG, Wood WW.
    Am J Phys Anthropol; 1989 Dec; 80(4):429-45. PubMed ID: 2603948
    [Abstract] [Full Text] [Related]

  • 34. Bilinear elastic property of the periodontal ligament for simulation using a finite element mandible model.
    Borák L, Florian Z, Bartáková S, Prachár P, Murakami N, Ona M, Igarashi Y, Wakabayashi N.
    Dent Mater J; 2011 Dec; 30(4):448-54. PubMed ID: 21778610
    [Abstract] [Full Text] [Related]

  • 35. Maximum clenching force of patients with moderate loss of posterior tooth support: a pilot study.
    Gibbs CH, Anusavice KJ, Young HM, Jones JS, Esquivel-Upshaw JF.
    J Prosthet Dent; 2002 Nov; 88(5):498-502. PubMed ID: 12473999
    [Abstract] [Full Text] [Related]

  • 36. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars.
    Dejak B, Mlotkowski A.
    J Prosthet Dent; 2008 Feb; 99(2):131-40. PubMed ID: 18262014
    [Abstract] [Full Text] [Related]

  • 37. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle.
    Aquilina P, Chamoli U, Parr WC, Clausen PD, Wroe S.
    Br J Oral Maxillofac Surg; 2013 Jun; 51(4):326-31. PubMed ID: 22981343
    [Abstract] [Full Text] [Related]

  • 38. [The evolution of the lower jaw and the jaw joint, from reptiles to man].
    Delaire J.
    Rev Stomatol Chir Maxillofac; 1998 Apr; 99(1):3-10. PubMed ID: 9615347
    [Abstract] [Full Text] [Related]

  • 39. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.
    Nakamura Y, Kanbara R, Ochiai KT, Tanaka Y.
    J Prosthet Dent; 2014 Oct; 112(4):972-80. PubMed ID: 24819523
    [Abstract] [Full Text] [Related]

  • 40. Analysis of dentinal stress distribution of maxillary central incisors subjected to various post-and-core applications.
    Toksavul S, Zor M, Toman M, Güngör MA, Nergiz I, Artunç C.
    Oper Dent; 2006 Oct; 31(1):89-96. PubMed ID: 16536199
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.