These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 24462199

  • 1. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus.
    Borghese R, Baccolini C, Francia F, Sabatino P, Turner RJ, Zannoni D.
    J Hazard Mater; 2014 Mar 30; 269():24-30. PubMed ID: 24462199
    [Abstract] [Full Text] [Related]

  • 2. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus.
    Borghese R, Brucale M, Fortunato G, Lanzi M, Mezzi A, Valle F, Cavallini M, Zannoni D.
    J Hazard Mater; 2016 May 15; 309():202-9. PubMed ID: 26894294
    [Abstract] [Full Text] [Related]

  • 3. Structural and electrochemical characterization of lawsone-dependent production of tellurium-metal nanoprecipitates by photosynthetic cells of Rhodobacter capsulatus.
    Borghese R, Malferrari M, Brucale M, Ortolani L, Franchini M, Rapino S, Borsetti F, Zannoni D.
    Bioelectrochemistry; 2020 Jun 15; 133():107456. PubMed ID: 32007911
    [Abstract] [Full Text] [Related]

  • 4. Reprint of "Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus".
    Borghese R, Brucale M, Fortunato G, Lanzi M, Mezzi A, Valle F, Cavallini M, Zannoni D.
    J Hazard Mater; 2017 Feb 15; 324(Pt A):31-38. PubMed ID: 27863796
    [Abstract] [Full Text] [Related]

  • 5. Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus.
    Borsetti F, Borghese R, Francia F, Randi MR, Fedi S, Zannoni D.
    Protoplasma; 2003 May 15; 221(1-2):153-61. PubMed ID: 12768353
    [Abstract] [Full Text] [Related]

  • 6. Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP).
    Borghese R, Cicerano S, Zannoni D.
    Antonie Van Leeuwenhoek; 2011 Nov 15; 100(4):655-8. PubMed ID: 21735076
    [Abstract] [Full Text] [Related]

  • 7. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles.
    Zonaro E, Piacenza E, Presentato A, Monti F, Dell'Anna R, Lampis S, Vallini G.
    Microb Cell Fact; 2017 Nov 28; 16(1):215. PubMed ID: 29183326
    [Abstract] [Full Text] [Related]

  • 8. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres.
    Bajaj M, Winter J.
    Microb Cell Fact; 2014 Nov 26; 13():168. PubMed ID: 25425453
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Effects of the metalloid oxyanion tellurite (TeO32-) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus.
    Borghese R, Borsetti F, Foladori P, Ziglio G, Zannoni D.
    Appl Environ Microbiol; 2004 Nov 26; 70(11):6595-602. PubMed ID: 15528523
    [Abstract] [Full Text] [Related]

  • 11. The bacterial response to the chalcogen metalloids Se and Te.
    Zannoni D, Borsetti F, Harrison JJ, Turner RJ.
    Adv Microb Physiol; 2008 Nov 26; 53():1-72. PubMed ID: 17707143
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides.
    Moore MD, Kaplan S.
    J Bacteriol; 1992 Mar 26; 174(5):1505-14. PubMed ID: 1537795
    [Abstract] [Full Text] [Related]

  • 15. Formation of Se(0), Te(0), and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor.
    Wadgaonkar SL, Mal J, Nancharaiah YV, Maheshwari NO, Esposito G, Lens PNL.
    Appl Microbiol Biotechnol; 2018 Mar 26; 102(6):2899-2911. PubMed ID: 29399711
    [Abstract] [Full Text] [Related]

  • 16. Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions.
    Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F, Zannoni D.
    Res Microbiol; 2005 Aug 26; 156(7):807-13. PubMed ID: 15946826
    [Abstract] [Full Text] [Related]

  • 17. Acetate permease (ActP) Is responsible for tellurite (TeO32-) uptake and resistance in cells of the facultative phototroph Rhodobacter capsulatus.
    Borghese R, Zannoni D.
    Appl Environ Microbiol; 2010 Feb 26; 76(3):942-4. PubMed ID: 19966028
    [Abstract] [Full Text] [Related]

  • 18. Simultaneous bioreduction of tellurite and selenite by Yarrowia lipolytica, Trichosporon cutaneum, and their co-culture along with characterization of biosynthesized Te-Se nanoparticles.
    Hosseini F, Hadian M, Lashani E, Moghimi H.
    Microb Cell Fact; 2023 Sep 25; 22(1):193. PubMed ID: 37749532
    [Abstract] [Full Text] [Related]

  • 19. Tellurite: history, oxidative stress, and molecular mechanisms of resistance.
    Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC.
    FEMS Microbiol Rev; 2009 Jul 25; 33(4):820-32. PubMed ID: 19368559
    [Abstract] [Full Text] [Related]

  • 20. Bacterial PerO Permeases Transport Sulfate and Related Oxyanions.
    Hoffmann MC, Pfänder Y, Tintel M, Masepohl B.
    J Bacteriol; 2017 Jul 15; 199(14):. PubMed ID: 28461447
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.