These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 24462892
1. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization. Liu BS, Wan ZY, Wang F, Zhan YP, Tian M, Cheung AS. J Hazard Mater; 2014 Feb 28; 267():229-37. PubMed ID: 24462892 [Abstract] [Full Text] [Related]
2. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas. Zhang FM, Liu BS, Zhang Y, Guo YH, Wan ZY, Subhan F. J Hazard Mater; 2012 Sep 30; 233-234():219-27. PubMed ID: 22835768 [Abstract] [Full Text] [Related]
3. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization. Zhang Y, Liu BS, Zhang FM, Zhang ZF. J Hazard Mater; 2013 Mar 15; 248-249():81-8. PubMed ID: 23337625 [Abstract] [Full Text] [Related]
7. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas. Wang J, Qiu B, Han L, Feng G, Hu Y, Chang L, Bao W. J Hazard Mater; 2012 Apr 30; 213-214():184-92. PubMed ID: 22341981 [Abstract] [Full Text] [Related]
8. The mechanism of coal gas desulfurization by iron oxide sorbents. Lin YH, Chen YC, Chu H. Chemosphere; 2015 Feb 30; 121():62-7. PubMed ID: 25434261 [Abstract] [Full Text] [Related]
9. Lattice substitution and desulfurization kinetic analysis of Zn-based spinel sorbents loading onto porous silicoaluminophosphate zeolites. Liu Q, Liu B, Liu Q, Xu R, Xia H. J Hazard Mater; 2020 Feb 05; 383():121151. PubMed ID: 31678744 [Abstract] [Full Text] [Related]
10. In situ incorporation of nickel nanoparticles into the mesopores of MCM-41 by manipulation of solvent-solute interaction and its activity toward adsorptive desulfurization of gas oil. Samadi-Maybodi A, Teymouri M, Vahid A, Miranbeigi A. J Hazard Mater; 2011 Sep 15; 192(3):1667-74. PubMed ID: 21820806 [Abstract] [Full Text] [Related]
12. Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures. Fan HL, Sun T, Zhao YP, Shangguan J, Lin JY. Environ Sci Technol; 2013 May 07; 47(9):4859-65. PubMed ID: 23528010 [Abstract] [Full Text] [Related]
13. High H2O-resistance CaO-MnOx/MSU-H sorbents for hot coal gas desulfurization. Xia H, Liu B. J Hazard Mater; 2017 Feb 15; 324(Pt B):281-290. PubMed ID: 27810326 [Abstract] [Full Text] [Related]
14. Regenerable sorbents for mercury capture in simulated coal combustion flue gas. Rodríguez-Pérez J, López-Antón MA, Díaz-Somoano M, García R, Martínez-Tarazona MR. J Hazard Mater; 2013 Sep 15; 260():869-77. PubMed ID: 23876255 [Abstract] [Full Text] [Related]
16. Improvement of the desulfurization and regeneration properties through the control of pore structures of the Zn-Ti-based H2S removal sorbents. Jung SY, Jun HK, Lee SJ, Lee TJ, Ryu CK, Kim JC. Environ Sci Technol; 2005 Dec 01; 39(23):9324-30. PubMed ID: 16382959 [Abstract] [Full Text] [Related]
17. A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas. Ko TH, Chu H, Liou YJ. J Hazard Mater; 2007 Aug 17; 147(1-2):334-41. PubMed ID: 17293040 [Abstract] [Full Text] [Related]
18. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies. Dhage P, Samokhvalov A, Repala D, Duin EC, Tatarchuk BJ. Phys Chem Chem Phys; 2011 Feb 14; 13(6):2179-87. PubMed ID: 21132188 [Abstract] [Full Text] [Related]