These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
216 related items for PubMed ID: 24467670
1. Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. Giberti S, Funck D, Forlani G. New Phytol; 2014 May; 202(3):911-919. PubMed ID: 24467670 [Abstract] [Full Text] [Related]
2. Partial purification and some properties of delta1-pyrroline-5-carboxylate reductase from Escherichia coli. Rossi JJ, Vender J, Berg CM, Coleman WH. J Bacteriol; 1977 Jan; 129(1):108-14. PubMed ID: 12133 [Abstract] [Full Text] [Related]
3. Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools. Marchese L, Olavarria K, Mantilla BS, Avila CC, Souza ROO, Damasceno FS, Elias MC, Silber AM. Biochem J; 2020 May 29; 477(10):1827-1845. PubMed ID: 32315030 [Abstract] [Full Text] [Related]
4. Coenzyme preference of Streptococcus pyogenes δ1-pyrroline-5-carboxylate reductase: evidence supporting NADPH as the physiological electron donor. Petrollino D, Forlani G. Amino Acids; 2012 Jul 29; 43(1):493-7. PubMed ID: 21938400 [Abstract] [Full Text] [Related]
5. Purification and characterization of rat lens pyrroline-5-carboxylate reductase. Shiono T, Kador PF, Kinoshita JJ. Biochim Biophys Acta; 1986 Mar 19; 881(1):72-8. PubMed ID: 3753884 [Abstract] [Full Text] [Related]
6. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase. Krishna RV, Beilstein P, Leisinger T. Biochem J; 1979 Jul 01; 181(1):223-30. PubMed ID: 114173 [Abstract] [Full Text] [Related]
7. Purification, characterization, and crystallization of human pyrroline-5-carboxylate reductase. Meng Z, Lou Z, Liu Z, Hui D, Bartlam M, Rao Z. Protein Expr Purif; 2006 Sep 01; 49(1):83-7. PubMed ID: 16600630 [Abstract] [Full Text] [Related]
8. Purification and characterization of Delta(1)-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves. Murahama M, Yoshida T, Hayashi F, Ichino T, Sanada Y, Wada K. Plant Cell Physiol; 2001 Jul 01; 42(7):742-50. PubMed ID: 11479381 [Abstract] [Full Text] [Related]
9. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N. J Biol Chem; 2005 Feb 18; 280(7):5329-35. PubMed ID: 15561717 [Abstract] [Full Text] [Related]
10. Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH. Merrill MJ, Yeh GC, Phang JM. J Biol Chem; 1989 Jun 05; 264(16):9352-8. PubMed ID: 2722838 [Abstract] [Full Text] [Related]
11. Plant P5C reductase as a new target for aminomethylenebisphosphonates. Forlani G, Giberti S, Berlicki L, Petrollino D, Kafarski P. J Agric Food Chem; 2007 May 30; 55(11):4340-7. PubMed ID: 17474756 [Abstract] [Full Text] [Related]
12. Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction. Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K. J Biol Chem; 2005 Dec 09; 280(49):40875-84. PubMed ID: 16192274 [Abstract] [Full Text] [Related]
15. Functional properties and structural characterization of rice δ(1)-pyrroline-5-carboxylate reductase. Forlani G, Bertazzini M, Zarattini M, Funck D, Ruszkowski M, Nocek B. Front Plant Sci; 2015 Dec 09; 6():565. PubMed ID: 26284087 [Abstract] [Full Text] [Related]
16. Demonstration of a NADPH-linked delta 1-pyrroline-5-carboxylate-proline shuttle in a cell-free rat liver system. Hagedorn CH. Biochim Biophys Acta; 1986 Oct 29; 884(1):11-7. PubMed ID: 3768405 [Abstract] [Full Text] [Related]
17. Crystal structures of delta1-pyrroline-5-carboxylate reductase from human pathogens Neisseria meningitides and Streptococcus pyogenes. Nocek B, Chang C, Li H, Lezondra L, Holzle D, Collart F, Joachimiak A. J Mol Biol; 2005 Nov 18; 354(1):91-106. PubMed ID: 16233902 [Abstract] [Full Text] [Related]
18. Crystal structure of human pyrroline-5-carboxylate reductase. Meng Z, Lou Z, Liu Z, Li M, Zhao X, Bartlam M, Rao Z. J Mol Biol; 2006 Jun 23; 359(5):1364-77. PubMed ID: 16730026 [Abstract] [Full Text] [Related]
19. Expression and kinetic characterization of PYCR3. Meeks KR, Tanner JJ. Arch Biochem Biophys; 2023 Jan 01; 733():109468. PubMed ID: 36414121 [Abstract] [Full Text] [Related]
20. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A. J Biol Chem; 2009 Sep 25; 284(39):26482-92. PubMed ID: 19635803 [Abstract] [Full Text] [Related] Page: [Next] [New Search]