These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


388 related items for PubMed ID: 24478472

  • 1. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements.
    Klima CL, Zaheer R, Cook SR, Booker CW, Hendrick S, Alexander TW, McAllister TA.
    J Clin Microbiol; 2014 Feb; 52(2):438-48. PubMed ID: 24478472
    [Abstract] [Full Text] [Related]

  • 2. Genetic relatedness and antimicrobial resistance in respiratory bacteria from beef calves sampled from spring processing to 40 days after feedlot entry.
    Guo Y, McMullen C, Timsit E, Hallewell J, Orsel K, van der Meer F, Yan S, Alexander TW.
    Vet Microbiol; 2020 Jan; 240():108478. PubMed ID: 31902491
    [Abstract] [Full Text] [Related]

  • 3. Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease.
    Timsit E, Hallewell J, Booker C, Tison N, Amat S, Alexander TW.
    Vet Microbiol; 2017 Sep; 208():118-125. PubMed ID: 28888626
    [Abstract] [Full Text] [Related]

  • 4. Molecular survey of infectious agents associated with bovine respiratory disease in a beef cattle feedlot in southern Brazil.
    Headley SA, Okano W, Balbo LC, Marcasso RA, Oliveira TE, Alfieri AF, Negri Filho LC, Michelazzo MZ, Rodrigues SC, Baptista AL, Saut JPE, Alfieri AA.
    J Vet Diagn Invest; 2018 Mar; 30(2):249-251. PubMed ID: 29105570
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Improving the detection of integrative conjugative elements in bovine nasopharyngeal swabs using multiplex recombinase polymerase amplification.
    Conrad CC, Funk T, Andrés-Lasheras S, Yevtushenko C, Claassen C, Otto SJG, Waldner C, Zaheer R, McAllister TA.
    J Microbiol Methods; 2024 Jun; 221():106943. PubMed ID: 38705209
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Pathogenic infection characteristics and risk factors for bovine respiratory disease complex based on the detection of lung pathogens in dead cattle in Northeast China.
    Zhou Y, Shao Z, Dai G, Li X, Xiang Y, Jiang S, Zhang Z, Ren Y, Zhu Z, Fan C, Zhang G.
    J Dairy Sci; 2023 Jan; 106(1):589-606. PubMed ID: 36333140
    [Abstract] [Full Text] [Related]

  • 9. Neglected bacterial infections associated to bovine respiratory disease in lactating cows from high-yielding dairy cattle herds.
    Massi RP, Lunardi M, Alfieri AF, Alfieri AA.
    Braz J Microbiol; 2023 Dec; 54(4):3275-3281. PubMed ID: 37917227
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.
    Owen JR, Noyes N, Young AE, Prince DJ, Blanchard PC, Lehenbauer TW, Aly SS, Davis JH, O'Rourke SM, Abdo Z, Belk K, Miller MR, Morley P, Van Eenennaam AL.
    G3 (Bethesda); 2017 Sep 07; 7(9):3059-3071. PubMed ID: 28739600
    [Abstract] [Full Text] [Related]

  • 12. Antimicrobial Susceptibility of Bacteria That Cause Bovine Respiratory Disease Complex in Alberta, Canada.
    Anholt RM, Klima C, Allan N, Matheson-Bird H, Schatz C, Ajitkumar P, Otto SJ, Peters D, Schmid K, Olson M, McAllister T, Ralston B.
    Front Vet Sci; 2017 Sep 07; 4():207. PubMed ID: 29255716
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Prevalence of respiratory bacterial pathogens and associated management factors in dairy calves in Taiwan.
    Lee HH, Thongrueang N, Liu SS, Hsu HY, Tsai YL.
    J Vet Med Sci; 2022 Jul 10; 84(7):946-953. PubMed ID: 35675980
    [Abstract] [Full Text] [Related]

  • 16. Limitations of bacterial culture, viral PCR, and tulathromycin susceptibility from upper respiratory tract samples in predicting clinical outcome of tulathromycin control or treatment of bovine respiratory disease in high-risk feeder heifers.
    Sarchet JJ, Pollreisz JP, Bechtol DT, Blanding MR, Saltman RL, Taube PC.
    PLoS One; 2022 Jul 10; 17(2):e0247213. PubMed ID: 35143504
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Cluster analysis of bovine respiratory disease (BRD)-associated pathogens shows the existence of two epidemiological patterns in BRD outbreaks.
    Calderón Bernal JM, Fernández A, Arnal JL, Baselga C, Benito Zuñiga A, Fernández-Garyzábal JF, Vela Alonso AI, Cid D.
    Vet Microbiol; 2023 May 10; 280():109701. PubMed ID: 36848816
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Microbial diversity involved in the etiology of a bovine respiratory disease outbreak in a dairy calf rearing unit.
    Oliveira VHS, Dall Agnol AM, Fritzen JTT, Lorenzetti E, Alfieri AA, Alfieri AF.
    Comp Immunol Microbiol Infect Dis; 2020 Aug 10; 71():101494. PubMed ID: 32434101
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.