These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 24482161

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling.
    Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, de Vernejoul MC.
    Am J Pathol; 2008 Sep; 173(3):773-80. PubMed ID: 18669617
    [Abstract] [Full Text] [Related]

  • 25. Molecular mechanisms in coupling of bone formation to resorption.
    Martin T, Gooi JH, Sims NA.
    Crit Rev Eukaryot Gene Expr; 2009 Sep; 19(1):73-88. PubMed ID: 19191758
    [Abstract] [Full Text] [Related]

  • 26. Smad4 is required for maintaining normal murine postnatal bone homeostasis.
    Tan X, Weng T, Zhang J, Wang J, Li W, Wan H, Lan Y, Cheng X, Hou N, Liu H, Ding J, Lin F, Yang R, Gao X, Chen D, Yang X.
    J Cell Sci; 2007 Jul 01; 120(Pt 13):2162-70. PubMed ID: 17550966
    [Abstract] [Full Text] [Related]

  • 27. Regulation of bone formation and remodeling by G-protein-coupled receptor 48.
    Luo J, Zhou W, Zhou X, Li D, Weng J, Yi Z, Cho SG, Li C, Yi T, Wu X, Li XY, de Crombrugghe B, Höök M, Liu M.
    Development; 2009 Aug 01; 136(16):2747-56. PubMed ID: 19605502
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Coordination of chondrogenesis and osteogenesis by hypertrophic chondrocytes in endochondral bone development.
    Hojo H, Ohba S, Yano F, Chung UI.
    J Bone Miner Metab; 2010 Sep 01; 28(5):489-502. PubMed ID: 20607327
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation.
    Chen Q, Zhang L, de Crombrugghe B, Krahe R.
    FASEB J; 2015 Jun 01; 29(6):2555-65. PubMed ID: 25746793
    [Abstract] [Full Text] [Related]

  • 34. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts.
    Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G.
    J Clin Invest; 2006 Dec 01; 116(12):3150-9. PubMed ID: 17099775
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. [Transdifferentiation of chondrocytes into osteogenic cells].
    Włodarski K, Włodarski P, Galus R, Brodzikowska A.
    Chir Narzadow Ruchu Ortop Pol; 2006 Dec 01; 71(3):199-203. PubMed ID: 17131726
    [Abstract] [Full Text] [Related]

  • 39. Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm.
    Xu Y, Malladi P, Zhou D, Longaker MT.
    Plast Reconstr Surg; 2007 Dec 01; 120(7):1783-1795. PubMed ID: 18090740
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.