These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
368 related items for PubMed ID: 24482281
1. The relationship of freeze tolerance with intracellular compounds in baker's yeasts. Shi X, Miao Y, Chen JY, Chen J, Li W, He X, Wang J. Appl Biochem Biotechnol; 2014 Mar; 172(6):3042-53. PubMed ID: 24482281 [Abstract] [Full Text] [Related]
3. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Tsolmonbaatar A, Hashida K, Sugimoto Y, Watanabe D, Furukawa S, Takagi H. Int J Food Microbiol; 2016 Dec 05; 238():233-240. PubMed ID: 27672730 [Abstract] [Full Text] [Related]
4. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough. Tan H, Dong J, Wang G, Xu H, Zhang C, Xiao D. J Ind Microbiol Biotechnol; 2014 Aug 05; 41(8):1275-85. PubMed ID: 24951963 [Abstract] [Full Text] [Related]
5. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Nakamura T, Takagi H, Shima J. Cryobiology; 2009 Apr 05; 58(2):170-4. PubMed ID: 19126409 [Abstract] [Full Text] [Related]
6. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Sasano Y, Takahashi S, Shima J, Takagi H. Int J Food Microbiol; 2010 Mar 31; 138(1-2):181-5. PubMed ID: 20096471 [Abstract] [Full Text] [Related]
7. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing. Codón AC, Rincón AM, Moreno-Mateos MA, Delgado-Jarana J, Rey M, Limón C, Rosado IV, Cubero B, Peñate X, Castrejón F, Benítez T. J Agric Food Chem; 2003 Jan 15; 51(2):483-91. PubMed ID: 12517114 [Abstract] [Full Text] [Related]
8. Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker's yeast isolated from dried sweet potatoes (hoshi-imo). Nishida O, Kuwazaki S, Suzuki C, Shima J. Biosci Biotechnol Biochem; 2004 Jul 15; 68(7):1442-8. PubMed ID: 15277748 [Abstract] [Full Text] [Related]
9. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. Dong J, Chen D, Wang G, Zhang C, Du L, Liu S, Zhao Y, Xiao D. J Ind Microbiol Biotechnol; 2016 Jun 15; 43(6):817-28. PubMed ID: 26965428 [Abstract] [Full Text] [Related]
10. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Sasano Y, Haitani Y, Ohtsu I, Shima J, Takagi H. Int J Food Microbiol; 2012 Jan 03; 152(1-2):40-3. PubMed ID: 22041027 [Abstract] [Full Text] [Related]
11. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H. Biosci Biotechnol Biochem; 2012 Jan 03; 76(3):624-7. PubMed ID: 22451415 [Abstract] [Full Text] [Related]
12. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach. Kronberg MF, Nikel PI, Cerrutti P, Galvagno MA. J Appl Microbiol; 2008 Mar 03; 104(3):716-27. PubMed ID: 17927744 [Abstract] [Full Text] [Related]
13. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D, Sekiguchi H, Sugimoto Y, Nagasawa A, Kida N, Takagi H. Appl Environ Microbiol; 2018 Jun 15; 84(12):. PubMed ID: 29625985 [Abstract] [Full Text] [Related]
14. Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Nakagawa S, Ouchi K. Appl Environ Microbiol; 1994 Oct 15; 60(10):3499-502. PubMed ID: 7986027 [Abstract] [Full Text] [Related]
15. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Teunissen A, Dumortier F, Gorwa MF, Bauer J, Tanghe A, Loïez A, Smet P, Van Dijck P, Thevelein JM. Appl Environ Microbiol; 2002 Oct 15; 68(10):4780-7. PubMed ID: 12324320 [Abstract] [Full Text] [Related]
16. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Shima J, Takagi H. Biotechnol Appl Biochem; 2009 May 29; 53(Pt 3):155-64. PubMed ID: 19476439 [Abstract] [Full Text] [Related]
17. Development of intra-strain self-cloning procedure for breeding baker's yeast strains. Nakagawa Y, Ogihara H, Mochizuki C, Yamamura H, Iimura Y, Hayakawa M. J Biosci Bioeng; 2017 Mar 29; 123(3):319-326. PubMed ID: 27829542 [Abstract] [Full Text] [Related]
18. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast. Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H. Appl Environ Microbiol; 1999 Jul 29; 65(7):2841-6. PubMed ID: 10388673 [Abstract] [Full Text] [Related]
19. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Izawa S, Ikeda K, Takahashi N, Inoue Y. Appl Microbiol Biotechnol; 2007 Jun 29; 75(3):533-7. PubMed ID: 17505771 [Abstract] [Full Text] [Related]
20. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Panadero J, Randez-Gil F, Prieto JA. J Agric Food Chem; 2005 Dec 28; 53(26):9966-70. PubMed ID: 16366681 [Abstract] [Full Text] [Related] Page: [Next] [New Search]