These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


345 related items for PubMed ID: 24483401

  • 21. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM, Lee S, Chun HM, Noh JD.
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [Abstract] [Full Text] [Related]

  • 22. Work and efficiency fluctuations in a quantum Otto cycle with idle levels.
    Anka MF, de Oliveira TR, Jonathan D.
    Phys Rev E; 2024 Jun; 109(6-1):064129. PubMed ID: 39021004
    [Abstract] [Full Text] [Related]

  • 23. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot.
    Peña FJ, Zambrano D, Negrete O, De Chiara G, Orellana PA, Vargas P.
    Phys Rev E; 2020 Jan; 101(1-1):012116. PubMed ID: 32069598
    [Abstract] [Full Text] [Related]

  • 24. Quantum heat engine with multilevel quantum systems.
    Quan HT, Zhang P, Sun CP.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056110. PubMed ID: 16383691
    [Abstract] [Full Text] [Related]

  • 25. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach.
    Peña FJ, Negrete O, Alvarado Barrios G, Zambrano D, González A, Nunez AS, Orellana PA, Vargas P.
    Entropy (Basel); 2019 May 20; 21(5):. PubMed ID: 33267226
    [Abstract] [Full Text] [Related]

  • 26. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K.
    Phys Rev E; 2022 Jul 20; 106(1-1):014114. PubMed ID: 35974499
    [Abstract] [Full Text] [Related]

  • 27. Suppression of work fluctuations by optimal control: An approach based on Jarzynski's equality.
    Xiao G, Gong J.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov 20; 90(5-1):052132. PubMed ID: 25493764
    [Abstract] [Full Text] [Related]

  • 28. Three-level laser heat engine at optimal performance with ecological function.
    Singh V, Johal RS.
    Phys Rev E; 2019 Jul 20; 100(1-1):012138. PubMed ID: 31499856
    [Abstract] [Full Text] [Related]

  • 29. Quantum correlated heat engine with spin squeezing.
    Altintas F, Hardal AÜ, Müstecaplıoglu ÖE.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep 20; 90(3):032102. PubMed ID: 25314390
    [Abstract] [Full Text] [Related]

  • 30. Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity.
    Wang J, He J, He X.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct 20; 84(4 Pt 1):041127. PubMed ID: 22181107
    [Abstract] [Full Text] [Related]

  • 31. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS, Batalhão TB, Herrera M, Souza AM, Sarthour RS, Oliveira IS, Serra RM.
    Phys Rev Lett; 2019 Dec 13; 123(24):240601. PubMed ID: 31922824
    [Abstract] [Full Text] [Related]

  • 32. A quantum heat engine driven by atomic collisions.
    Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A.
    Nat Commun; 2021 Apr 06; 12(1):2063. PubMed ID: 33824327
    [Abstract] [Full Text] [Related]

  • 33. Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics.
    Abah O, Paternostro M.
    Phys Rev E; 2019 Feb 06; 99(2-1):022110. PubMed ID: 30934342
    [Abstract] [Full Text] [Related]

  • 34. Performance of a quantum heat engine at strong reservoir coupling.
    Newman D, Mintert F, Nazir A.
    Phys Rev E; 2017 Mar 06; 95(3-1):032139. PubMed ID: 28415330
    [Abstract] [Full Text] [Related]

  • 35. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V, Singh S, Abah O, Müstecaplıoğlu ÖE.
    Phys Rev E; 2022 Aug 06; 106(2-1):024137. PubMed ID: 36110016
    [Abstract] [Full Text] [Related]

  • 36. Finite-power performance of quantum heat engines in linear response.
    Liu Q, He J, Ma Y, Wang J.
    Phys Rev E; 2019 Jul 06; 100(1-1):012105. PubMed ID: 31499858
    [Abstract] [Full Text] [Related]

  • 37. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times.
    Purkait C, Biswas A.
    Phys Rev E; 2023 May 06; 107(5-1):054110. PubMed ID: 37329072
    [Abstract] [Full Text] [Related]

  • 38. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space.
    An S, Lv D, Del Campo A, Kim K.
    Nat Commun; 2016 Sep 27; 7():12999. PubMed ID: 27669897
    [Abstract] [Full Text] [Related]

  • 39. Shortcuts to Adiabatic Pumping in Classical Stochastic Systems.
    Funo K, Lambert N, Nori F, Flindt C.
    Phys Rev Lett; 2020 Apr 17; 124(15):150603. PubMed ID: 32357046
    [Abstract] [Full Text] [Related]

  • 40. The second law, Maxwell's demon, and work derivable from quantum heat engines.
    Kieu TD.
    Phys Rev Lett; 2004 Oct 01; 93(14):140403. PubMed ID: 15524772
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.