These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


412 related items for PubMed ID: 24486241

  • 1. Validation of a body-worn accelerometer to measure activity patterns in octogenarians.
    Taylor LM, Klenk J, Maney AJ, Kerse N, Macdonald BM, Maddison R.
    Arch Phys Med Rehabil; 2014 May; 95(5):930-4. PubMed ID: 24486241
    [Abstract] [Full Text] [Related]

  • 2. Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson's disease.
    Dijkstra B, Kamsma YP, Zijlstra W.
    Arch Phys Med Rehabil; 2010 Aug; 91(8):1272-7. PubMed ID: 20684910
    [Abstract] [Full Text] [Related]

  • 3. Validation of an accelerometer for measurement of activity in frail older people.
    Chigateri NG, Kerse N, Wheeler L, MacDonald B, Klenk J.
    Gait Posture; 2018 Oct; 66():114-117. PubMed ID: 30172217
    [Abstract] [Full Text] [Related]

  • 4. Assessing physical activity in older adults: required days of trunk accelerometer measurements for reliable estimation.
    van Schooten KS, Rispens SM, Elders PJ, Lips P, van Dieën JH, Pijnappels M.
    J Aging Phys Act; 2015 Jan; 23(1):9-17. PubMed ID: 24306934
    [Abstract] [Full Text] [Related]

  • 5. Week-to-week differences of children's habitual activity and postural allocation as measured by the ActivPAL monitor.
    Hinckson EA, Hopkins WG, Aminian S, Ross K.
    Gait Posture; 2013 Sep; 38(4):663-7. PubMed ID: 23548581
    [Abstract] [Full Text] [Related]

  • 6. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Büla CJ, Robert P.
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [Abstract] [Full Text] [Related]

  • 7. Comparative validity of accelerometer-based measures of physical activity for people with multiple sclerosis.
    Coote S, O'Dwyer C.
    Arch Phys Med Rehabil; 2012 Nov; 93(11):2022-8. PubMed ID: 22634293
    [Abstract] [Full Text] [Related]

  • 8. Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor.
    Nam Y, Park JW.
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):420-6. PubMed ID: 24235114
    [Abstract] [Full Text] [Related]

  • 9. Reliable recognition of lying, sitting, and standing with a hip-worn accelerometer.
    Vähä-Ypyä H, Husu P, Suni J, Vasankari T, Sievänen H.
    Scand J Med Sci Sports; 2018 Mar; 28(3):1092-1102. PubMed ID: 29144567
    [Abstract] [Full Text] [Related]

  • 10. Physical activity monitoring in patients with peripheral arterial disease: validation of an activity monitor.
    Fokkenrood HJ, Verhofstad N, van den Houten MM, Lauret GJ, Wittens C, Scheltinga MR, Teijink JA.
    Eur J Vasc Endovasc Surg; 2014 Aug; 48(2):194-200. PubMed ID: 24880631
    [Abstract] [Full Text] [Related]

  • 11. Activity classification using a single chest mounted tri-axial accelerometer.
    Godfrey A, Bourke AK, Olaighin GM, van de Ven P, Nelson J.
    Med Eng Phys; 2011 Nov; 33(9):1127-35. PubMed ID: 21636308
    [Abstract] [Full Text] [Related]

  • 12. Feature selection and activity recognition system using a single triaxial accelerometer.
    Gupta P, Dallas T.
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526
    [Abstract] [Full Text] [Related]

  • 13. Exploring actical accelerometers as an objective measure of physical activity in people with multiple sclerosis.
    Kayes NM, Schluter PJ, McPherson KM, Leete M, Mawston G, Taylor D.
    Arch Phys Med Rehabil; 2009 Apr; 90(4):594-601. PubMed ID: 19345774
    [Abstract] [Full Text] [Related]

  • 14. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F, Bourke AK, Chardonnens J, Paraschiv-Ionescu A, Aminian K.
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [Abstract] [Full Text] [Related]

  • 15. A description of an accelerometer-based mobility monitoring technique.
    Lyons GM, Culhane KM, Hilton D, Grace PA, Lyons D.
    Med Eng Phys; 2005 Jul; 27(6):497-504. PubMed ID: 15990066
    [Abstract] [Full Text] [Related]

  • 16. Validity of the intelligent device for energy expenditure and activity accelerometry system for quantitative gait analysis in patients with hip osteoarthritis.
    Item-Glatthorn JF, Casartelli NC, Petrich-Munzinger J, Munzinger UK, Maffiuletti NA.
    Arch Phys Med Rehabil; 2012 Nov; 93(11):2090-3. PubMed ID: 22771482
    [Abstract] [Full Text] [Related]

  • 17. Activity monitoring for assessment of physical activities in daily life in patients with chronic obstructive pulmonary disease.
    Pitta F, Troosters T, Spruit MA, Decramer M, Gosselink R.
    Arch Phys Med Rehabil; 2005 Oct; 86(10):1979-85. PubMed ID: 16213242
    [Abstract] [Full Text] [Related]

  • 18. Physical activity monitoring in stroke: SenseWear Pro2 activity accelerometer versus Yamax Digi-Walker SW-200 pedometer.
    Vanroy C, Vissers D, Cras P, Beyne S, Feys H, Vanlandewijck Y, Truijen S.
    Disabil Rehabil; 2014 Oct; 36(20):1695-703. PubMed ID: 24279597
    [Abstract] [Full Text] [Related]

  • 19. GT3X+ accelerometer, Yamax pedometer and SC-StepMX pedometer step count accuracy in community-dwelling older adults.
    Webber SC, Magill SM, Schafer JL, Wilson KC.
    J Aging Phys Act; 2014 Jul; 22(3):334-41. PubMed ID: 23921227
    [Abstract] [Full Text] [Related]

  • 20. Unobtrusive, continuous, in-home gait measurement using the Microsoft Kinect.
    Stone EE, Skubic M.
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2925-32. PubMed ID: 23744661
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.