These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


732 related items for PubMed ID: 24486642

  • 1. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts.
    Zhu M, Wang K, Mei J, Li C, Zhang J, Zheng W, An D, Xiao N, Zhao Q, Kong D, Wang L.
    Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642
    [Abstract] [Full Text] [Related]

  • 2. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q, Zhang X, Hu X, Kaplan DL.
    Macromol Biosci; 2010 Mar 10; 10(3):289-98. PubMed ID: 19924684
    [Abstract] [Full Text] [Related]

  • 3. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ, Min KD, Lee MC, Kim SH, Lee OJ, Ju HW, Moon BM, Lee JM, Park YR, Kim DW, Jeong JY, Park CH.
    J Biomed Mater Res A; 2016 Jul 10; 104(7):1779-87. PubMed ID: 26999521
    [Abstract] [Full Text] [Related]

  • 4. Bilayered vascular grafts based on silk proteins.
    Liu S, Dong C, Lu G, Lu Q, Li Z, Kaplan DL, Zhu H.
    Acta Biomater; 2013 Nov 10; 9(11):8991-9003. PubMed ID: 23851155
    [Abstract] [Full Text] [Related]

  • 5. Electrospun scaffolds from silk fibroin and their cellular compatibility.
    Zhang K, Mo X, Huang C, He C, Wang H.
    J Biomed Mater Res A; 2010 Jun 01; 93(3):976-83. PubMed ID: 19722283
    [Abstract] [Full Text] [Related]

  • 6. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL.
    Acta Biomater; 2012 Jan 01; 8(1):289-301. PubMed ID: 22019518
    [Abstract] [Full Text] [Related]

  • 7. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering.
    Zeng C, Yang Q, Zhu M, Du L, Zhang J, Ma X, Xu B, Wang L.
    Mater Sci Eng C Mater Biol Appl; 2014 Apr 01; 37():232-40. PubMed ID: 24582244
    [Abstract] [Full Text] [Related]

  • 8. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J, Suo A, Jin X, Xu W, Xu M.
    J Biomed Mater Res A; 2014 Sep 01; 102(9):2961-71. PubMed ID: 24123779
    [Abstract] [Full Text] [Related]

  • 9. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology.
    Teimouri A, Ebrahimi R, Emadi R, Beni BH, Chermahini AN.
    Int J Biol Macromol; 2015 May 01; 76():292-302. PubMed ID: 25709014
    [Abstract] [Full Text] [Related]

  • 10. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application.
    Vishwanath V, Pramanik K, Biswas A.
    J Biomater Sci Polym Ed; 2016 May 01; 27(7):657-74. PubMed ID: 26830046
    [Abstract] [Full Text] [Related]

  • 11. Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds.
    Fan Z, Zhang F, Liu T, Zuo BQ.
    Int J Biol Macromol; 2014 Apr 01; 65():516-23. PubMed ID: 24495557
    [Abstract] [Full Text] [Related]

  • 12. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering.
    Park YR, Ju HW, Lee JM, Kim DK, Lee OJ, Moon BM, Park HJ, Jeong JY, Yeon YK, Park CH.
    Int J Biol Macromol; 2016 Dec 01; 93(Pt B):1567-1574. PubMed ID: 27431792
    [Abstract] [Full Text] [Related]

  • 13. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications.
    Zhang H, Liu X, Yang M, Zhu L.
    Mater Sci Eng C Mater Biol Appl; 2015 Oct 01; 55():8-13. PubMed ID: 26117733
    [Abstract] [Full Text] [Related]

  • 14. Cell proliferation and migration in silk fibroin 3D scaffolds.
    Mandal BB, Kundu SC.
    Biomaterials; 2009 May 01; 30(15):2956-65. PubMed ID: 19249094
    [Abstract] [Full Text] [Related]

  • 15. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds.
    Hofmann S, Stok KS, Kohler T, Meinel AJ, Müller R.
    Acta Biomater; 2014 Jan 01; 10(1):308-17. PubMed ID: 24013025
    [Abstract] [Full Text] [Related]

  • 16. Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration.
    Ghorbanian L, Emadi R, Razavi SM, Shin H, Teimouri A.
    Int J Biol Macromol; 2013 Jul 01; 58():275-80. PubMed ID: 23603246
    [Abstract] [Full Text] [Related]

  • 17. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.
    Sangkert S, Meesane J, Kamonmattayakul S, Chai WL.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():1138-49. PubMed ID: 26478414
    [Abstract] [Full Text] [Related]

  • 18. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration.
    Wang K, Xu M, Zhu M, Su H, Wang H, Kong D, Wang L.
    J Biomed Mater Res A; 2013 Dec 01; 101(12):3474-81. PubMed ID: 23606405
    [Abstract] [Full Text] [Related]

  • 19. Fabrication and characterization of porous tubular silk fibroin scaffolds.
    Min S, Gao X, Liu L, Tian L, Zhu L, Zhang H, Yao J.
    J Biomater Sci Polym Ed; 2009 Dec 01; 20(13):1961-74. PubMed ID: 19793450
    [Abstract] [Full Text] [Related]

  • 20. In vitro evaluation of combined sulfated silk fibroin scaffolds for vascular cell growth.
    Liu H, Ding X, Bi Y, Gong X, Li X, Zhou G, Fan Y.
    Macromol Biosci; 2013 Jun 01; 13(6):755-66. PubMed ID: 23610045
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.