These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
398 related items for PubMed ID: 24488115
1. Structural origins of Johari-Goldstein relaxation in a metallic glass. Liu YH, Fujita T, Aji DP, Matsuura M, Chen MW. Nat Commun; 2014; 5():3238. PubMed ID: 24488115 [Abstract] [Full Text] [Related]
2. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol. Yardimci H, Leheny RL. J Chem Phys; 2006 Jun 07; 124(21):214503. PubMed ID: 16774419 [Abstract] [Full Text] [Related]
3. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses. Yu HB, Richert R, Samwer K. Sci Adv; 2017 Nov 07; 3(11):e1701577. PubMed ID: 29159283 [Abstract] [Full Text] [Related]
4. Relation between the activation energy of the Johari-Goldstein beta relaxation and T(g) of glass formers. Ngai KL, Capaccioli S. Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar 07; 69(3 Pt 1):031501. PubMed ID: 15089297 [Abstract] [Full Text] [Related]
5. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses. Mehta M, Ragoonanan V, McKenna GB, Suryanarayanan R. Mol Pharm; 2016 Apr 04; 13(4):1267-77. PubMed ID: 26895136 [Abstract] [Full Text] [Related]
6. Johari-Goldstein Relaxation Far Below T_{g}: Experimental Evidence for the Gardner Transition in Structural Glasses? Geirhos K, Lunkenheimer P, Loidl A. Phys Rev Lett; 2018 Feb 23; 120(8):085705. PubMed ID: 29543001 [Abstract] [Full Text] [Related]
7. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure. Kaminska E, Kaminski K, Paluch M, Ngai KL. J Chem Phys; 2006 Apr 28; 124(16):164511. PubMed ID: 16674150 [Abstract] [Full Text] [Related]
8. Characteristics of the structural and Johari-Goldstein relaxations in Pd-based metallic glass-forming liquids. Qiao J, Casalini R, Pelletier JM, Kato H. J Phys Chem B; 2014 Apr 03; 118(13):3720-30. PubMed ID: 24611812 [Abstract] [Full Text] [Related]
9. Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework. Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Ngai KL. J Chem Phys; 2004 Mar 08; 120(10):4808-15. PubMed ID: 15267341 [Abstract] [Full Text] [Related]
10. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions. Mierzwa M, Pawlus S, Paluch M, Kaminska E, Ngai KL. J Chem Phys; 2008 Jan 28; 128(4):044512. PubMed ID: 18247974 [Abstract] [Full Text] [Related]
11. Johari-Goldstein β relaxation in glassy dynamics originates from two-scale energy landscape. Shiraishi K, Mizuno H, Ikeda A. Proc Natl Acad Sci U S A; 2023 Apr 04; 120(14):e2215153120. PubMed ID: 36989301 [Abstract] [Full Text] [Related]
12. Communications: Comparison of activation barriers for the Johari-Goldstein and alpha relaxations and its implications. Goldstein M. J Chem Phys; 2010 Jan 28; 132(4):041104. PubMed ID: 20113012 [Abstract] [Full Text] [Related]
13. Fundamental Link between β Relaxation, Excess Wings, and Cage-Breaking in Metallic Glasses. Yu HB, Yang MH, Sun Y, Zhang F, Liu JB, Wang CZ, Ho KM, Richert R, Samwer K. J Phys Chem Lett; 2018 Oct 04; 9(19):5877-5883. PubMed ID: 30240226 [Abstract] [Full Text] [Related]
14. Molecular dynamics simulation of the Johari-Goldstein relaxation in a molecular liquid. Fragiadakis D, Roland CM. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug 04; 86(2 Pt 1):020501. PubMed ID: 23005709 [Abstract] [Full Text] [Related]
15. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols. Yomogida Y, Minoguchi A, Nozaki R. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr 04; 73(4 Pt 1):041510. PubMed ID: 16711812 [Abstract] [Full Text] [Related]
16. Dynamic heterogeneity, cooperative motion, and Johari-Goldstein [Formula: see text]-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition. Zhang H, Wang X, Yu HB, Douglas JF. Eur Phys J E Soft Matter; 2021 Apr 19; 44(4):56. PubMed ID: 33871722 [Abstract] [Full Text] [Related]
17. Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems. Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Sharifi S, Rolla PA. J Phys Chem B; 2008 Apr 17; 112(15):4470-3. PubMed ID: 18366219 [Abstract] [Full Text] [Related]
18. Molecular mobility in the supercooled and glassy states of nizatidine and perphenazine. Sailaja U, Shahin Thayyil M, Krishna Kumar NS, Govindaraj G, Ngai KL. Eur J Pharm Sci; 2017 Mar 01; 99():147-151. PubMed ID: 27916696 [Abstract] [Full Text] [Related]
19. Characteristics of the Johari-Goldstein process in rigid asymmetric molecules. Fragiadakis D, Roland CM. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct 01; 88(4):042307. PubMed ID: 24229172 [Abstract] [Full Text] [Related]
20. Additive property of secondary relaxation processes in di-n-octyl and di-isooctyl phthalates: signature of non-Johari-Goldstein relaxation. Kaminska E, Kaminski K, Paluch M, Ziolo J, Ngai KL. J Chem Phys; 2007 May 07; 126(17):174501. PubMed ID: 17492868 [Abstract] [Full Text] [Related] Page: [Next] [New Search]