These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 24491177

  • 41. Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions.
    Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK.
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():94-100. PubMed ID: 24231744
    [Abstract] [Full Text] [Related]

  • 42. [Colorimetric assay of perfluorooctanesulfonate based on gold nanoparticles].
    Cong YB, Zheng YH, Zheng L, Wu F, Tan KJ.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):189-92. PubMed ID: 25993846
    [Abstract] [Full Text] [Related]

  • 43. Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification.
    Liu P, Yang X, Sun S, Wang Q, Wang K, Huang J, Liu J, He L.
    Anal Chem; 2013 Aug 20; 85(16):7689-95. PubMed ID: 23895103
    [Abstract] [Full Text] [Related]

  • 44. Modulation of the surface charge on polymer-stabilized gold nanoparticles by the application of an external stimulus.
    Boyer C, Whittaker MR, Chuah K, Liu J, Davis TP.
    Langmuir; 2010 Feb 16; 26(4):2721-30. PubMed ID: 19894684
    [Abstract] [Full Text] [Related]

  • 45. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity.
    Li Y, Wu P, Xu H, Zhang H, Zhong X.
    Analyst; 2011 Jan 07; 136(1):196-200. PubMed ID: 20931106
    [Abstract] [Full Text] [Related]

  • 46. Direct detection of β-agonists by use of gold nanoparticle-based colorimetric assays.
    He P, Shen L, Liu R, Luo Z, Li Z.
    Anal Chem; 2011 Sep 15; 83(18):6988-95. PubMed ID: 21846151
    [Abstract] [Full Text] [Related]

  • 47. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols.
    Xu H, Wang Y, Huang X, Li Y, Zhang H, Zhong X.
    Analyst; 2012 Feb 21; 137(4):924-31. PubMed ID: 22179771
    [Abstract] [Full Text] [Related]

  • 48. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes.
    Zhang L, Xu C, Liu C, Li B.
    Anal Chim Acta; 2014 Jan 27; 809():123-7. PubMed ID: 24418142
    [Abstract] [Full Text] [Related]

  • 49. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing.
    Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M, Li S.
    Talanta; 2013 Oct 15; 115():992-8. PubMed ID: 24054693
    [Abstract] [Full Text] [Related]

  • 50. Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles.
    Wu Y, Liu L, Zhan S, Wang F, Zhou P.
    Analyst; 2012 Sep 21; 137(18):4171-8. PubMed ID: 22842645
    [Abstract] [Full Text] [Related]

  • 51. Reversible controlled assembly of thermosensitive polymer-coated gold nanoparticles.
    Durand-Gasselin C, Sanson N, Lequeux N.
    Langmuir; 2011 Oct 18; 27(20):12329-35. PubMed ID: 21902271
    [Abstract] [Full Text] [Related]

  • 52. Colorimetric recognition of pazufloxacin mesilate based on the aggregation of gold nanoparticles.
    Kong S, Liao M, Gu Y, Li N, Wu P, Zhang T, He H.
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar 15; 157():244-250. PubMed ID: 26774816
    [Abstract] [Full Text] [Related]

  • 53. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution.
    Wu Y, Zhan S, Wang F, He L, Zhi W, Zhou P.
    Chem Commun (Camb); 2012 May 11; 48(37):4459-61. PubMed ID: 22453203
    [Abstract] [Full Text] [Related]

  • 54. Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction.
    Giannoulis KM, Giokas DL, Tsogas GZ, Vlessidis AG.
    Talanta; 2014 Feb 11; 119():276-83. PubMed ID: 24401415
    [Abstract] [Full Text] [Related]

  • 55. Direct detection of hyaluronidase in urine using cationic gold nanoparticles: a potential diagnostic test for bladder cancer.
    Nossier AI, Eissa S, Ismail MF, Hamdy MA, Azzazy HM.
    Biosens Bioelectron; 2014 Apr 15; 54():7-14. PubMed ID: 24240162
    [Abstract] [Full Text] [Related]

  • 56. Highly selective and sensitive gold nanoparticle-based colorimetric assay for PO₄³⁻ in aqueous solution.
    He G, Zhao L, Chen K, Liu Y, Zhu H.
    Talanta; 2013 Mar 15; 106():73-8. PubMed ID: 23598097
    [Abstract] [Full Text] [Related]

  • 57. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.
    Yu CJ, Tseng WL.
    Langmuir; 2008 Nov 04; 24(21):12717-22. PubMed ID: 18839969
    [Abstract] [Full Text] [Related]

  • 58. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine.
    Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z.
    Analyst; 2011 Sep 21; 136(18):3725-30. PubMed ID: 21804959
    [Abstract] [Full Text] [Related]

  • 59. Lysine-promoted colorimetric response of gold nanoparticles: a simple assay for ultrasensitive mercury(II) detection.
    Sener G, Uzun L, Denizli A.
    Anal Chem; 2014 Jan 07; 86(1):514-20. PubMed ID: 24364626
    [Abstract] [Full Text] [Related]

  • 60. Thioglucose-stabilized gold nanoparticles as a novel platform for colorimetric bioassay based on nanoparticle aggregation.
    Watanabe S, Yoshida K, Shinkawa K, Kumagawa D, Seguchi H.
    Colloids Surf B Biointerfaces; 2010 Dec 01; 81(2):570-7. PubMed ID: 20801619
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.