These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Morrison D, Hughes J, Della Gatta PA, Mason S, Lamon S, Russell AP, Wadley GD. Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865 [Abstract] [Full Text] [Related]
3. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. Paulsen G, Hamarsland H, Cumming KT, Johansen RE, Hulmi JJ, Børsheim E, Wiig H, Garthe I, Raastad T. J Physiol; 2014 Dec 15; 592(24):5391-408. PubMed ID: 25384788 [Abstract] [Full Text] [Related]
4. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Viña J. Am J Clin Nutr; 2008 Jan 15; 87(1):142-9. PubMed ID: 18175748 [Abstract] [Full Text] [Related]
5. Antioxidant supplementation does not alter endurance training adaptation. Yfanti C, Akerström T, Nielsen S, Nielsen AR, Mounier R, Mortensen OH, Lykkesfeldt J, Rose AJ, Fischer CP, Pedersen BK. Med Sci Sports Exerc; 2010 Jul 15; 42(7):1388-95. PubMed ID: 20019626 [Abstract] [Full Text] [Related]
7. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats. Kim JC, Park GD, Kim SH. J Nutr Sci Vitaminol (Tokyo); 2017 Jul 15; 63(5):277-283. PubMed ID: 29225311 [Abstract] [Full Text] [Related]
9. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. J Physiol; 2010 Mar 15; 588(Pt 6):1011-22. PubMed ID: 20100740 [Abstract] [Full Text] [Related]
10. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. Shill DD, Southern WM, Willingham TB, Lansford KA, McCully KK, Jenkins NT. J Physiol; 2016 Dec 01; 594(23):7005-7014. PubMed ID: 27501153 [Abstract] [Full Text] [Related]
14. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. J Appl Physiol (1985); 2008 Nov 01; 105(5):1462-70. PubMed ID: 18772325 [Abstract] [Full Text] [Related]
15. Training-induced mitochondrial adaptation: role of peroxisome proliferator-activated receptor γ coactivator-1α, nuclear factor-κB and β-blockade. Feng H, Kang C, Dickman JR, Koenig R, Awoyinka I, Zhang Y, Ji LL. Exp Physiol; 2013 Mar 01; 98(3):784-95. PubMed ID: 23104933 [Abstract] [Full Text] [Related]
19. PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, Yan Z. Am J Physiol Cell Physiol; 2010 Mar 01; 298(3):C572-9. PubMed ID: 20032509 [Abstract] [Full Text] [Related]
20. Effects of Pyrroloquinoline Quinone (PQQ) Supplementation on Aerobic Exercise Performance and Indices of Mitochondrial Biogenesis in Untrained Men. Hwang PS, Machek SB, Cardaci TD, Wilburn DT, Kim CS, Suezaki ES, Willoughby DS. J Am Coll Nutr; 2020 Aug 01; 39(6):547-556. PubMed ID: 31860387 [Abstract] [Full Text] [Related] Page: [Next] [New Search]