These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 24493003

  • 1. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y, Wang G, Wang H, Yang Y, Li Y.
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [Abstract] [Full Text] [Related]

  • 2. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y.
    Nano Lett; 2011 May 11; 11(5):2119-25. PubMed ID: 21476581
    [Abstract] [Full Text] [Related]

  • 3. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT, Ye H, Flaherty DW, Bard AJ, Mullins CB.
    ACS Nano; 2010 Apr 27; 4(4):1977-86. PubMed ID: 20361756
    [Abstract] [Full Text] [Related]

  • 4. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent.
    Fan K, Li F, Wang L, Daniel Q, Chen H, Gabrielsson E, Sun J, Sun L.
    ChemSusChem; 2015 Oct 12; 8(19):3242-7. PubMed ID: 26315677
    [Abstract] [Full Text] [Related]

  • 5. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA, Choi KS.
    J Am Chem Soc; 2012 Feb 01; 134(4):2186-92. PubMed ID: 22263661
    [Abstract] [Full Text] [Related]

  • 6. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y.
    Nano Lett; 2011 Jul 13; 11(7):3026-33. PubMed ID: 21710974
    [Abstract] [Full Text] [Related]

  • 7. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L, Zhou X, Nguyen NT, Schmuki P.
    ChemSusChem; 2015 Feb 13; 8(4):618-22. PubMed ID: 25581403
    [Abstract] [Full Text] [Related]

  • 8. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting.
    Chernomordik BD, Russell HB, Cvelbar U, Jasinski JB, Kumar V, Deutsch T, Sunkara MK.
    Nanotechnology; 2012 May 17; 23(19):194009. PubMed ID: 22539110
    [Abstract] [Full Text] [Related]

  • 9. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J, Soheilnia N, Liao K, O'Brien P, Tian Y, Burch KS, Ozin GA.
    ChemSusChem; 2015 May 11; 8(9):1557-67. PubMed ID: 25650837
    [Abstract] [Full Text] [Related]

  • 10. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L, Palacios-Padrós A, Kirchgeorg R, Tighineanu A, Schmuki P.
    ChemSusChem; 2014 Feb 11; 7(2):421-4. PubMed ID: 24449523
    [Abstract] [Full Text] [Related]

  • 11. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.
    Zhang Y, Ji H, Ma W, Chen C, Song W, Zhao J.
    Molecules; 2016 Jul 01; 21(7):. PubMed ID: 27376262
    [Abstract] [Full Text] [Related]

  • 12. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.
    Li M, Yang Y, Ling Y, Qiu W, Wang F, Liu T, Song Y, Liu X, Fang P, Tong Y, Li Y.
    Nano Lett; 2017 Apr 12; 17(4):2490-2495. PubMed ID: 28334530
    [Abstract] [Full Text] [Related]

  • 13. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe2 O3 Nanoflake Photoelectrodes.
    Wang L, Nguyen NT, Zhang Y, Bi Y, Schmuki P.
    ChemSusChem; 2017 Jul 10; 10(13):2720-2727. PubMed ID: 28437588
    [Abstract] [Full Text] [Related]

  • 14. Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting.
    Kim JY, Youn DH, Kim JH, Kim HG, Lee JS.
    ACS Appl Mater Interfaces; 2015 Jul 01; 7(25):14123-9. PubMed ID: 26046296
    [Abstract] [Full Text] [Related]

  • 15. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L, Nguyen NT, Schmuki P.
    ChemSusChem; 2016 Aug 23; 9(16):2048-53. PubMed ID: 27348809
    [Abstract] [Full Text] [Related]

  • 16. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K, Le Formal F, Grätzel M.
    ChemSusChem; 2011 Apr 18; 4(4):432-49. PubMed ID: 21416621
    [Abstract] [Full Text] [Related]

  • 17. Activation of α-Fe2 O3 for Photoelectrochemical Water Splitting Strongly Enhanced by Low Temperature Annealing in Low Oxygen Containing Ambient.
    Makimizu Y, Nguyen NT, Tucek J, Ahn HJ, Yoo J, Poornajar M, Hwang I, Kment S, Schmuki P.
    Chemistry; 2020 Feb 26; 26(12):2685-2692. PubMed ID: 31788871
    [Abstract] [Full Text] [Related]

  • 18. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH, Leite LD, Leite ER.
    ChemSusChem; 2012 Dec 26; 5(12):2341-7. PubMed ID: 23139181
    [Abstract] [Full Text] [Related]

  • 19. Highly self-diffused Sn doping in α-Fe2O3 nanorod photoanodes initiated from β-FeOOH nanorod/FTO by hydrogen treatment for solar water oxidation.
    Ma H, Mahadik MA, Park JW, Kumar M, Chung HS, Chae WS, Kong GW, Lee HH, Choi SH, Jang JS.
    Nanoscale; 2018 Dec 21; 10(47):22560-22571. PubMed ID: 30480694
    [Abstract] [Full Text] [Related]

  • 20. Monte Carlo study for the growth of alpha-Fe2O3 nanowires synthesized by thermal oxidation of iron.
    Dong Z, Kashkarov P, Zhang H.
    Nanoscale; 2010 Apr 21; 2(4):524-8. PubMed ID: 20644754
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.