These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha DK. BMC Genomics; 2017 Sep 16; 18(1):731. PubMed ID: 28915789 [Abstract] [Full Text] [Related]
4. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ, Engelsberger WR, Hincha DK. Cryobiology; 2008 Oct 16; 57(2):104-12. PubMed ID: 18619434 [Abstract] [Full Text] [Related]
5. Arabidopsis HDA6 is required for freezing tolerance. To TK, Nakaminami K, Kim JM, Morosawa T, Ishida J, Tanaka M, Yokoyama S, Shinozaki K, Seki M. Biochem Biophys Res Commun; 2011 Mar 18; 406(3):414-9. PubMed ID: 21329671 [Abstract] [Full Text] [Related]
6. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu JK. Plant Physiol; 2016 Aug 18; 171(4):2744-59. PubMed ID: 27252305 [Abstract] [Full Text] [Related]
9. Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Zuther E, Juszczak I, Lee YP, Baier M, Hincha DK. Sci Rep; 2015 Jul 15; 5():12199. PubMed ID: 26174584 [Abstract] [Full Text] [Related]
10. The role of raffinose in the cold acclimation response of Arabidopsis thaliana. Zuther E, Büchel K, Hundertmark M, Stitt M, Hincha DK, Heyer AG. FEBS Lett; 2004 Oct 08; 576(1-2):169-73. PubMed ID: 15474032 [Abstract] [Full Text] [Related]
11. Fitness benefits and costs of cold acclimation in Arabidopsis thaliana. Zhen Y, Dhakal P, Ungerer MC. Am Nat; 2011 Jul 08; 178(1):44-52. PubMed ID: 21670576 [Abstract] [Full Text] [Related]
12. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Plant Cell Environ; 2015 Aug 08; 38(8):1658-72. PubMed ID: 25689473 [Abstract] [Full Text] [Related]
13. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R. Physiol Plant; 2008 Dec 08; 134(4):583-97. PubMed ID: 19000195 [Abstract] [Full Text] [Related]
14. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Zhao M, Liu W, Xia X, Wang T, Zhang WH. Physiol Plant; 2014 Sep 08; 152(1):115-29. PubMed ID: 24494928 [Abstract] [Full Text] [Related]
16. Deacclimation after cold acclimation-a crucial, but widely neglected part of plant winter survival. Vyse K, Pagter M, Zuther E, Hincha DK. J Exp Bot; 2019 Sep 24; 70(18):4595-4604. PubMed ID: 31087096 [Abstract] [Full Text] [Related]
17. Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Shin H, Oh Y, Kim D. Physiol Plant; 2015 Aug 24; 154(4):485-99. PubMed ID: 25272204 [Abstract] [Full Text] [Related]
19. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Plant J; 2005 Jan 24; 41(2):195-211. PubMed ID: 15634197 [Abstract] [Full Text] [Related]
20. Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis. Bode R, Ivanov AG, Hüner NP. Photosynth Res; 2016 Jun 24; 128(3):287-312. PubMed ID: 27021769 [Abstract] [Full Text] [Related] Page: [Next] [New Search]