These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 2449753

  • 1. CD4 T cells and allograft rejection.
    Hao L, Wang Y, Gill RG, Lafferty KJ.
    Transplant Proc; 1988 Feb; 20(1):56-60. PubMed ID: 2449753
    [No Abstract] [Full Text] [Related]

  • 2. Phenotypic and functional analysis of T cells derived from mice developing a lethal graft-versus-host reaction (GVHR) to non-H-2 antigens.
    Bruley-Rosset M, Bonardelle D, Churaqui E, Halle-Pannenko O.
    Transplant Proc; 1989 Feb; 21(1 Pt 3):3039-41. PubMed ID: 2468251
    [No Abstract] [Full Text] [Related]

  • 3. Role of CD4+ and CD8+ T cells in proislet allograft and xenograft rejection.
    Simeonovic CJ, Wilson JD.
    Transplant Proc; 1992 Feb; 24(1):252-3. PubMed ID: 1539270
    [No Abstract] [Full Text] [Related]

  • 4. Characterization of primary T cell subsets mediating rejection of pancreatic islet grafts.
    Gill RG, Rosenberg AS, Lafferty KJ, Singer A.
    J Immunol; 1989 Oct 01; 143(7):2176-8. PubMed ID: 2506278
    [Abstract] [Full Text] [Related]

  • 5. Genetic analysis of the presentation of minor lymphocyte stimulating determinants. I. Combined importance of MHC and non-MHC influences.
    Ryan JJ, Mond JJ, Finkelman FD.
    J Immunol; 1988 Aug 15; 141(4):1063-73. PubMed ID: 3135319
    [Abstract] [Full Text] [Related]

  • 6. A novel cell type responsible for marrow graft rejection in mice. T cells with NK phenotype cause acute rejection of marrow grafts.
    Yankelevich B, Knobloch C, Nowicki M, Dennert G.
    J Immunol; 1989 May 15; 142(10):3423-30. PubMed ID: 2654290
    [Abstract] [Full Text] [Related]

  • 7. Successful islet allografting requires depletion of both Lyt-2+ and L3T4+ cells.
    Yamamoto H, Monden M, Gotoh M, Ichikawa T, Kubota N, Kawai M, Mori T, Sakurai M, Uenaka A, Nakayama E.
    Transplant Proc; 1989 Feb 15; 21(1 Pt 3):2707-8. PubMed ID: 2495676
    [No Abstract] [Full Text] [Related]

  • 8. Fine specificity of class I MHC recognition in islet allografts.
    Ferguson D, Kohli N, Munn SR.
    Transplant Proc; 1995 Dec 15; 27(6):3222. PubMed ID: 8539924
    [No Abstract] [Full Text] [Related]

  • 9. A rat anti-mouse T4 monoclonal antibody (H129.19) inhibits the proliferation of Ia-reactive T cell clones and delineates two phenotypically distinct (T4+, Lyt-2,3-, and T4-, Lyt-2,3+) subsets among anti-Ia cytolytic T cell clones.
    Pierres A, Naquet P, Van Agthoven A, Bekkhoucha F, Denizot F, Mishal Z, Schmitt-Verhulst AM, Pierres M.
    J Immunol; 1984 Jun 15; 132(6):2775-82. PubMed ID: 6202760
    [Abstract] [Full Text] [Related]

  • 10. T cell recognition of Mlsc. I. Influence of MHC gene products in Mlsc-specific T cell recognition.
    Abe R, Hodes RJ.
    J Immunol; 1988 Jun 15; 140(12):4132-8. PubMed ID: 2453568
    [Abstract] [Full Text] [Related]

  • 11. Reduced diversity of CTLs specific for multiple minor histocompatibility antigens relative to allograft rejection in vivo.
    Nevala WK, Paul C, Wettstein PJ.
    J Immunol; 1997 Feb 01; 158(3):1102-7. PubMed ID: 9013948
    [Abstract] [Full Text] [Related]

  • 12. Comparison of Abeta(b-/-), H2-DM(-), and CIITA(-/-) in second-set skin allograft rejection.
    Felix NJ, de Serres S, Meyer AA, Ting JP.
    J Surg Res; 2002 Feb 01; 102(2):185-92. PubMed ID: 11796017
    [Abstract] [Full Text] [Related]

  • 13. The role of donor and recipient B7-1 (CD80) in allograft rejection.
    Zheng XX, Sayegh MH, Zheng XG, Li Y, Linsley PS, Peach R, Borriello F, Strom TB, Sharpe AH, Turka LA.
    J Immunol; 1997 Aug 01; 159(3):1169-73. PubMed ID: 9233610
    [Abstract] [Full Text] [Related]

  • 14. T cell suppression in transplantation tolerance through linked recognition.
    Davies JD, Leong LY, Mellor A, Cobbold SP, Waldmann H.
    J Immunol; 1996 May 15; 156(10):3602-7. PubMed ID: 8621893
    [Abstract] [Full Text] [Related]

  • 15. Langerhans cells, orthotopic corneal allografts, and direct and indirect pathways of T-cell allorecognition.
    Sano Y, Ksander BR, Streilein JW.
    Invest Ophthalmol Vis Sci; 2000 May 15; 41(6):1422-31. PubMed ID: 10798658
    [Abstract] [Full Text] [Related]

  • 16. Histoincompatibility-associated differences in the phenotypes of murine cardiac allograft infiltrating T cells.
    Carlquist JF, Shelby J, Hammond EH, Greenwood JH, Anderson JL.
    Immunology; 1994 May 15; 82(1):149-53. PubMed ID: 7913913
    [Abstract] [Full Text] [Related]

  • 17. IL-2 and IL-4 double knockout mice reject islet allografts: a role for novel T cell growth factors in allograft rejection.
    Li XC, Roy-Chaudhury P, Hancock WW, Manfro R, Zand MS, Li Y, Zheng XX, Nickerson PW, Steiger J, Malek TR, Strom TB.
    J Immunol; 1998 Jul 15; 161(2):890-6. PubMed ID: 9670967
    [Abstract] [Full Text] [Related]

  • 18. Cytotoxic T cells play no essential role in acute rejection of orthotopic corneal allografts in mice.
    Yamada J, Ksander BR, Streilein JW.
    Invest Ophthalmol Vis Sci; 2001 Feb 15; 42(2):386-92. PubMed ID: 11157871
    [Abstract] [Full Text] [Related]

  • 19. Monoclonal antibodies to murine CD3 epsilon define distinct epitopes, one of which may interact with CD4 during T cell activation.
    Portoles P, Rojo J, Golby A, Bonneville M, Gromkowski S, Greenbaum L, Janeway CA, Murphy DB, Bottomly K.
    J Immunol; 1989 Jun 15; 142(12):4169-75. PubMed ID: 2470817
    [Abstract] [Full Text] [Related]

  • 20. The replacement of graft endothelium by recipient-type cells conditions allograft rejection mediated by indirect pathway CD4+ T cells.
    Kapessidou Y, Habran C, Buonocore S, Flamand V, Barvais L, Goldman M, Braun MY.
    Transplantation; 2006 Aug 27; 82(4):582-91. PubMed ID: 16958183
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.