These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 24498126

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica.
    Magalhães C, Stevens MI, Cary SC, Ball BA, Storey BC, Wall DH, Türk R, Ruprecht U.
    PLoS One; 2012; 7(9):e44578. PubMed ID: 23028563
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica.
    Czechowski P, White D, Clarke L, McKay A, Cooper A, Stevens MI.
    R Soc Open Sci; 2016 Dec; 3(12):160296. PubMed ID: 28083092
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change.
    Andriuzzi WS, Adams BJ, Barrett JE, Virginia RA, Wall DH.
    Ecology; 2018 Feb; 99(2):312-321. PubMed ID: 29315515
    [Abstract] [Full Text] [Related]

  • 10. Abiotic factors influencing soil microbial activity in the northern Antarctic Peninsula region.
    Díaz-Puente FJ, Schmid T, Pelayo M, Rodríguez-Rastrero M, Herraiz MJS, O'Neill T, López-Martínez J.
    Sci Total Environ; 2021 Jan 01; 750():141602. PubMed ID: 32882495
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases.
    Zhang E, Thibaut LM, Terauds A, Raven M, Tanaka MM, van Dorst J, Wong SY, Crane S, Ferrari BC.
    Microbiome; 2020 Mar 16; 8(1):37. PubMed ID: 32178729
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Epiphyte type and sampling height impact mesofauna communities in Douglas-fir trees.
    Young AR, Miller JED, Villella J, Carey G, Miller WR.
    PeerJ; 2018 Mar 16; 6():e5699. PubMed ID: 30345168
    [Abstract] [Full Text] [Related]

  • 16. Tardigrade distribution in soils of high Arctic habitats.
    Tůmová M, Jílková V, Macek P, Devetter M.
    Ecol Evol; 2024 Jul 16; 14(7):e11386. PubMed ID: 38962018
    [Abstract] [Full Text] [Related]

  • 17. Trace metals in Antarctica related to climate change and increasing human impact.
    Bargagli R.
    Rev Environ Contam Toxicol; 2000 Jul 16; 166():129-73. PubMed ID: 10868078
    [Abstract] [Full Text] [Related]

  • 18. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient.
    Yergeau E, Bokhorst S, Huiskes AH, Boschker HT, Aerts R, Kowalchuk GA.
    FEMS Microbiol Ecol; 2007 Feb 16; 59(2):436-51. PubMed ID: 16978243
    [Abstract] [Full Text] [Related]

  • 19. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?
    Nielsen UN, Wall DH.
    Ecol Lett; 2013 Mar 16; 16(3):409-19. PubMed ID: 23278945
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.