These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
104 related items for PubMed ID: 2450359
61. Effects of inhibition of transsarcolemmal calcium influx on content and releasability of calcium stored in sarcoplasmic reticulum of intact myocardium. Komai H, Rusy BF. Adv Pharmacol; 1994; 31():215-21. PubMed ID: 7873413 [No Abstract] [Full Text] [Related]
63. Mechanisms of calcium accumulation and transport in cardiac relaxing system (sarcoplasmic reticulum membranes): effects of Verapamil, D-600, X537A and A23187. Entman ML, Allen JC, Bornet EP, Gillette PC, Wallick ET, Schwart A. J Mol Cell Cardiol; 1972 Dec; 4(6):681-7. PubMed ID: 4652932 [No Abstract] [Full Text] [Related]
65. The relation between calcium ion transport and adenylate cyclase activity in myocardial sarcoplasmic-reticulum preparations. Gillibrand IM, Miall PA. Biochem J; 1972 Jul; 128(3):109P. PubMed ID: 4634825 [No Abstract] [Full Text] [Related]
66. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Caroni P, Carafoli E. Nature; 1980 Feb 21; 283(5749):765-7. PubMed ID: 6444455 [No Abstract] [Full Text] [Related]
67. [Functional disorders of the sarcoplasmic reticulum in total myocardial ischemia and the protective effect of quercetin]. Brovkovich VM, Benevolenskiĭ DS, Levitskiĭ DO. Kardiologiia; 1987 Oct 21; 27(10):102-5. PubMed ID: 3695068 [No Abstract] [Full Text] [Related]
68. Apparent initial binding rate of calcium by canine cardiac-relaxing system. McCollum WB, Besch HR, Entman ML, Schwartz A. Am J Physiol; 1972 Sep 21; 223(3):608-14. PubMed ID: 5055317 [No Abstract] [Full Text] [Related]
69. Calcium ionophore activity of a prostaglandin B1 derivative (PGBx). Ohnishi ST, Devlin TM. Biochem Biophys Res Commun; 1979 Jul 12; 89(1):240-5. PubMed ID: 113006 [No Abstract] [Full Text] [Related]
71. Calcium efflux from cardiac sarcoplasmic reticulum: effects of calcium and magnesium. Dunnett J, Nayler WG. J Mol Cell Cardiol; 1978 May 12; 10(5):487-98. PubMed ID: 660661 [No Abstract] [Full Text] [Related]
72. Involvement of free radicals in the pathophysiology of ischemic heart disease. Hess ML, Manson NH, Okabe E. Can J Physiol Pharmacol; 1982 Nov 12; 60(11):1382-9. PubMed ID: 6217883 [No Abstract] [Full Text] [Related]
73. Model of calcium movements in the mammalian myocardium: interval-strength relationship. Adler D, Wong AY, Mahler Y, Klassen GA. J Theor Biol; 1985 Mar 21; 113(2):379-94. PubMed ID: 3999782 [Abstract] [Full Text] [Related]
74. Initial calcium binding rates of canine cardiac relaxing system (sarcoplasmic reticulum fragments) determined by stopped-flow spectrophotometry. Besch HR, Schwartz A. Biochem Biophys Res Commun; 1971 Oct 15; 45(2):286-92. PubMed ID: 5160717 [No Abstract] [Full Text] [Related]
75. Calcium metabolism. Schwartz A. Cardiology; 1972 Oct 15; 57(1):16-23. PubMed ID: 5037889 [No Abstract] [Full Text] [Related]
77. Kinetics of sodium ion induced calcium ion release in calcium ion loaded cardiac sarcolemmal vesicles: determination of initial velocities by stopped-flow spectrophotometry. Kadoma M, Froehlich J, Reeves J, Sutko J. Biochemistry; 1982 Apr 13; 21(8):1914-8. PubMed ID: 6282324 [No Abstract] [Full Text] [Related]
78. [Target cardioprotection. Calcium can lead to cell death]. Reiermann HJ. Fortschr Med Suppl; 1986 Apr 13; 3():10-1. PubMed ID: 2422099 [No Abstract] [Full Text] [Related]
79. Failing human myocardium "fails" to translate performance demand signals. Lakatta EG. J Mol Cell Cardiol; 2004 Jan 13; 36(1):1-5. PubMed ID: 14734039 [No Abstract] [Full Text] [Related]
80. The role of passive efflux pathways in determining steady-state loading in canine cardiac sarcoplasmic reticulum vesicles. Feher JJ, Alderson BH, Lipford GB. Prog Clin Biol Res; 1988 Jan 13; 252():149-54. PubMed ID: 2450359 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]