These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


90 related items for PubMed ID: 24503594

  • 1. The hLAMP-1-positive particulate matrix involved in cardiac mesenchyme formation in the chick does not include BMP-2.
    Abd-Elhamid TH, Conway ML, Sinning AR.
    Cells Tissues Organs; 2013; 198(5):338-48. PubMed ID: 24503594
    [Abstract] [Full Text] [Related]

  • 2. Expression of hLAMP-1-Positive Particles During Early Heart Development in the Chick.
    Abd-Elhamid TH, Conway ML, Sinning AR.
    Anat Histol Embryol; 2017 Oct; 46(5):413-422. PubMed ID: 28677155
    [Abstract] [Full Text] [Related]

  • 3. Identification of cDNA clones that encode hLAMP-1, a component of the particulate matrix associated with cardiac mesenchyme formation.
    Sinning AR, McKay KJ.
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Apr; 277(2):307-11. PubMed ID: 15052658
    [Abstract] [Full Text] [Related]

  • 4. Functional BMP receptor in endocardial cells is required in atrioventricular cushion mesenchymal cell formation in chick.
    Okagawa H, Markwald RR, Sugi Y.
    Dev Biol; 2007 Jun 01; 306(1):179-92. PubMed ID: 17449024
    [Abstract] [Full Text] [Related]

  • 5. Partial purification of HLAMP-1 provides direct evidence for the multicomponent nature of the particulate matrix associated with cardiac mesenchyme formation.
    Sinning AR.
    J Cell Biochem; 1997 Jul 01; 66(1):112-22. PubMed ID: 9215533
    [Abstract] [Full Text] [Related]

  • 6. Retinoic acid inhibition of cardiac mesenchyme formation in vitro correlates with changes in the secretion of particulate matrix from the myocardium.
    Yan M, Nick TG, Sinning AR.
    Anat Rec; 2000 Feb 01; 258(2):186-97. PubMed ID: 10645966
    [Abstract] [Full Text] [Related]

  • 7. Multiple glycoproteins localize to a particulate form of extracellular matrix in regions of the embryonic heart where endothelial cells transform into mesenchyme.
    Sinning AR, Krug EL, Markwald RR.
    Anat Rec; 1992 Feb 01; 232(2):285-92. PubMed ID: 1546806
    [Abstract] [Full Text] [Related]

  • 8. Expression and function of bone morphogenetic proteins in the development of the embryonic endocardial cushions.
    Keyes WM, Logan C, Parker E, Sanders EJ.
    Anat Embryol (Berl); 2003 Sep 01; 207(2):135-47. PubMed ID: 12905017
    [Abstract] [Full Text] [Related]

  • 9. Retinoic acid administration is associated with changes in the extracellular matrix and cardiac mesenchyme within the endocardial cushion.
    Yan M, Sinning AR.
    Anat Rec; 2001 May 01; 263(1):53-61. PubMed ID: 11331971
    [Abstract] [Full Text] [Related]

  • 10. The epicardium as a source of mesenchyme for the developing heart.
    Muñoz-Chápuli R, Pérez-Pomares JM, Macías D, García-Garrido L, Carmona R, González-Iriarte M.
    Ital J Anat Embryol; 2001 May 01; 106(2 Suppl 1):187-96. PubMed ID: 11729954
    [Abstract] [Full Text] [Related]

  • 11. Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice.
    Sugi Y, Yamamura H, Okagawa H, Markwald RR.
    Dev Biol; 2004 May 15; 269(2):505-18. PubMed ID: 15110716
    [Abstract] [Full Text] [Related]

  • 12. Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGFbeta-3-mediated autocrine signaling.
    Ramsdell AF, Markwald RR.
    Dev Biol; 1997 Aug 01; 188(1):64-74. PubMed ID: 9245512
    [Abstract] [Full Text] [Related]

  • 13. Bone morphogenetic protein-2 acts synergistically with transforming growth factor-beta3 during endothelial-mesenchymal transformation in the developing chick heart.
    Yamagishi T, Nakajima Y, Miyazono K, Nakamura H.
    J Cell Physiol; 1999 Jul 01; 180(1):35-45. PubMed ID: 10362015
    [Abstract] [Full Text] [Related]

  • 14. ROCK1 expression is regulated by TGFbeta3 and ALK2 during valvuloseptal endocardial cushion formation.
    Sakabe M, Sakata H, Matsui H, Ikeda K, Yamagishi T, Nakajima Y.
    Anat Rec (Hoboken); 2008 Jul 01; 291(7):845-57. PubMed ID: 18461597
    [Abstract] [Full Text] [Related]

  • 15. An antiserum (ES1) against a particulate form of extracellular matrix blocks the transition of cardiac endothelium into mesenchyme in culture.
    Mjaatvedt CH, Krug EL, Markwald RR.
    Dev Biol; 1991 Jun 01; 145(2):219-30. PubMed ID: 2040370
    [Abstract] [Full Text] [Related]

  • 16. A subset of SBA lectin-binding proteins isolated from myocardial-conditioned media transforms cardiac endothelium into mesenchyme.
    Sinning AR, Hewitt CC, Markwald RR.
    Acta Anat (Basel); 1995 Jun 01; 154(2):111-9. PubMed ID: 8722510
    [Abstract] [Full Text] [Related]

  • 17. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.
    Inai K, Burnside JL, Hoffman S, Toole BP, Sugi Y.
    PLoS One; 2013 Jun 01; 8(10):e77593. PubMed ID: 24147033
    [Abstract] [Full Text] [Related]

  • 18. An autocrine function for transforming growth factor (TGF)-beta3 in the transformation of atrioventricular canal endocardium into mesenchyme during chick heart development.
    Nakajima Y, Yamagishi T, Nakamura H, Markwald RR, Krug EL.
    Dev Biol; 1998 Feb 01; 194(1):99-113. PubMed ID: 9473335
    [Abstract] [Full Text] [Related]

  • 19. Myocardial regulation of transforming growth factor-beta expression by outflow tract endothelium in the early embryonic chick heart.
    Nakajima Y, Krug EL, Markwald RR.
    Dev Biol; 1994 Oct 01; 165(2):615-26. PubMed ID: 7958426
    [Abstract] [Full Text] [Related]

  • 20. Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro.
    Roark EF, Greer K.
    Dev Dyn; 1994 Jun 01; 200(2):103-16. PubMed ID: 7919498
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.