These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 24506525
1. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Hikosaka K. Plant Cell Environ; 2014 Sep; 37(9):2077-85. PubMed ID: 24506525 [Abstract] [Full Text] [Related]
3. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Peltoniemi MS, Duursma RA, Medlyn BE. Tree Physiol; 2012 May; 32(5):510-9. PubMed ID: 22491524 [Abstract] [Full Text] [Related]
7. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Brodersen CR, Vogelmann TC, Williams WE, Gorton HL. Plant Cell Environ; 2008 Jan; 31(1):159-64. PubMed ID: 18028265 [Abstract] [Full Text] [Related]
11. Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Posada JM, Lechowicz MJ, Kitajima K. Ann Bot; 2009 Mar; 103(5):795-805. PubMed ID: 19151040 [Abstract] [Full Text] [Related]
12. Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves. McMurtrie RE, Dewar RC. Tree Physiol; 2011 Sep; 31(9):1007-23. PubMed ID: 21646281 [Abstract] [Full Text] [Related]
13. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis. Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR. Plant Physiol; 2018 Feb; 176(2):1215-1232. PubMed ID: 29061904 [Abstract] [Full Text] [Related]
14. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. Niinemets Ü. Photosynth Res; 2023 Nov; 158(2):131-149. PubMed ID: 37615905 [Abstract] [Full Text] [Related]
15. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Niinemets U, Valladares F. Plant Biol (Stuttg); 2004 May; 6(3):254-68. PubMed ID: 15143434 [Abstract] [Full Text] [Related]
16. Elements of a dynamic systems model of canopy photosynthesis. Zhu XG, Song Q, Ort DR. Curr Opin Plant Biol; 2012 Jun; 15(3):237-44. PubMed ID: 22325454 [Abstract] [Full Text] [Related]
17. Functional significance of shade-induced leaf senescence in dense canopies: an experimental test using transgenic tobacco. Boonman A, Anten NP, Dueck TA, Jordi WJ, van der Werf A, Voesenek LA, Pons TL. Am Nat; 2006 Nov; 168(5):597-607. PubMed ID: 17080359 [Abstract] [Full Text] [Related]
18. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. Zhu XG, Ort DR, Whitmarsh J, Long SP. J Exp Bot; 2004 May; 55(400):1167-75. PubMed ID: 15133059 [Abstract] [Full Text] [Related]
19. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Hirose T, Werger MJ. Oecologia; 1987 Jul; 72(4):520-526. PubMed ID: 28312513 [Abstract] [Full Text] [Related]
20. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Anten NP, Schieving F, Werger MJ. Oecologia; 1995 Apr; 101(4):504-513. PubMed ID: 28306967 [Abstract] [Full Text] [Related] Page: [Next] [New Search]