These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
308 related items for PubMed ID: 24507325
1. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize. Cai C, Zhao L, Huang J, Chen Y, Wei C. Carbohydr Polym; 2014 Feb 15; 102():606-14. PubMed ID: 24507325 [Abstract] [Full Text] [Related]
2. Heterogeneous structure and spatial distribution in endosperm of high-amylose rice starch granules with different morphologies. Cai C, Huang J, Zhao L, Liu Q, Zhang C, Wei C. J Agric Food Chem; 2014 Oct 15; 62(41):10143-52. PubMed ID: 25238128 [Abstract] [Full Text] [Related]
6. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule "ghost" integrity. Debet MR, Gidley MJ. J Agric Food Chem; 2007 Jun 13; 55(12):4752-60. PubMed ID: 17503832 [Abstract] [Full Text] [Related]
8. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content. Brewer LR, Cai L, Shi YC. J Agric Food Chem; 2012 May 02; 60(17):4379-87. PubMed ID: 22480190 [Abstract] [Full Text] [Related]
10. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. Wei C, Qin F, Zhu L, Zhou W, Chen Y, Wang Y, Gu M, Liu Q. J Agric Food Chem; 2010 Jan 27; 58(2):1224-32. PubMed ID: 20030326 [Abstract] [Full Text] [Related]
11. Different structures of heterogeneous starch granules from high-amylose rice. Man J, Lin L, Wang Z, Wang Y, Liu Q, Wei C. J Agric Food Chem; 2014 Nov 19; 62(46):11254-63. PubMed ID: 25373551 [Abstract] [Full Text] [Related]
13. Formation of semi-compound C-type starch granule in high-amylose rice developed by antisense RNA inhibition of starch-branching enzyme. Wei C, Qin F, Zhou W, Chen Y, Xu B, Wang Y, Gu M, Liu Q. J Agric Food Chem; 2010 Oct 27; 58(20):11097-104. PubMed ID: 20866042 [Abstract] [Full Text] [Related]
15. Effects of acid hydrolysis on the evolution of starch fine molecular structures and gelatinization properties. Li C, Hu Y. Food Chem; 2021 Aug 15; 353():129449. PubMed ID: 33714112 [Abstract] [Full Text] [Related]
17. Influence of extrusion and digestion on the nanostructure of high-amylose maize starch. Lopez-Rubio A, Htoon A, Gilbert EP. Biomacromolecules; 2007 May 15; 8(5):1564-72. PubMed ID: 17394285 [Abstract] [Full Text] [Related]
18. Structural features of non-granular spherulitic maize starch. Nordmark TS, Ziegler GR. Carbohydr Res; 2002 Sep 09; 337(16):1467-75. PubMed ID: 12204608 [Abstract] [Full Text] [Related]
19. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness. Gayral M, Bakan B, Dalgalarrondo M, Elmorjani K, Delluc C, Brunet S, Linossier L, Morel MH, Marion D. J Agric Food Chem; 2015 Apr 08; 63(13):3551-8. PubMed ID: 25794198 [Abstract] [Full Text] [Related]
20. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch. Qiu S, Yadav MP, Chen H, Liu Y, Tatsumi E, Yin L. Carbohydr Polym; 2015 Jan 22; 115():246-52. PubMed ID: 25439892 [Abstract] [Full Text] [Related] Page: [Next] [New Search]