These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


358 related items for PubMed ID: 24508660

  • 1. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value.
    Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J.
    Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.
    Ito Y, Hirasawa T, Shimizu H.
    Biosci Biotechnol Biochem; 2014 Mar; 78(1):151-9. PubMed ID: 25036498
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid.
    Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C.
    Metab Eng; 2010 Nov; 12(6):518-25. PubMed ID: 20854924
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae.
    Cao H, Yue M, Li S, Bai X, Zhao X, Du Y.
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.
    Jain VK, Divol B, Prior BA, Bauer FF.
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823
    [Abstract] [Full Text] [Related]

  • 10. Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain.
    Zelle RM, de Hulster E, Kloezen W, Pronk JT, van Maris AJ.
    Appl Environ Microbiol; 2010 Feb; 76(3):744-50. PubMed ID: 20008165
    [Abstract] [Full Text] [Related]

  • 11. Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation.
    Li J, Li Y, Cui Z, Liang Q, Qi Q.
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3153-3161. PubMed ID: 28108762
    [Abstract] [Full Text] [Related]

  • 12. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N, Xia H, Yang J, Zhao X, Chen T.
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [Abstract] [Full Text] [Related]

  • 13. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS.
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [Abstract] [Full Text] [Related]

  • 14. Restoring of Glucose Metabolism of Engineered Yarrowia lipolytica for Succinic Acid Production via a Simple and Efficient Adaptive Evolution Strategy.
    Yang X, Wang H, Li C, Lin CSK.
    J Agric Food Chem; 2017 May 24; 65(20):4133-4139. PubMed ID: 28474529
    [Abstract] [Full Text] [Related]

  • 15. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim IK, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I.
    Microb Cell Fact; 2016 Mar 15; 15():53. PubMed ID: 26980206
    [Abstract] [Full Text] [Related]

  • 16. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.
    Xu G, Chen X, Liu L, Jiang L.
    Bioresour Technol; 2013 Nov 15; 148():91-6. PubMed ID: 24045196
    [Abstract] [Full Text] [Related]

  • 17. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].
    Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J.
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct 15; 29(10):1484-93. PubMed ID: 24432663
    [Abstract] [Full Text] [Related]

  • 18. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli.
    Chan S, Kanchanatawee S, Jantama K.
    Bioresour Technol; 2012 Jan 15; 103(1):329-36. PubMed ID: 22023966
    [Abstract] [Full Text] [Related]

  • 19. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae.
    Raab AM, Lang C.
    Bioeng Bugs; 2011 Jan 15; 2(2):120-3. PubMed ID: 21637001
    [Abstract] [Full Text] [Related]

  • 20. Intracellular product recycling in high succinic acid producing yeast at low pH.
    Wahl SA, Bernal Martinez C, Zhao Z, van Gulik WM, Jansen MLA.
    Microb Cell Fact; 2017 May 23; 16(1):90. PubMed ID: 28535757
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.