These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 24509228
1. Mechanisms that underlie the internalization and extracellular signal regulated kinase 1/2 activation by PKR2 receptor. Yin W, Liu H, Peng Z, Chen D, Li J, Li JD. Cell Signal; 2014 May; 26(5):1118-24. PubMed ID: 24509228 [Abstract] [Full Text] [Related]
2. The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation. Perez-Aso M, Segura V, Montó F, Barettino D, Noguera MA, Milligan G, D'Ocon P. Biochim Biophys Acta; 2013 Oct; 1833(10):2322-33. PubMed ID: 23797059 [Abstract] [Full Text] [Related]
4. The role of beta-arrestins in the formyl peptide receptor-like 1 internalization and signaling. Huet E, Boulay F, Barral S, Rabiet MJ. Cell Signal; 2007 Sep; 19(9):1939-48. PubMed ID: 17594911 [Abstract] [Full Text] [Related]
5. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. Paradis JS, Ly S, Blondel-Tepaz É, Galan JA, Beautrait A, Scott MG, Enslen H, Marullo S, Roux PP, Bouvier M. Proc Natl Acad Sci U S A; 2015 Sep 15; 112(37):E5160-8. PubMed ID: 26324936 [Abstract] [Full Text] [Related]
6. Activation of amygdala prokineticin receptor 2 neurons drives the anorexigenic activity of the neuropeptide PK2. Yin TC, Mittal A, Buscaglia P, Li W, Sebag JA. J Biol Chem; 2023 Jan 15; 299(1):102814. PubMed ID: 36539034 [Abstract] [Full Text] [Related]
7. Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on beta-arrestin translocation or receptor endocytosis. Gripentrog JM, Miettinen HM. Cell Signal; 2005 Oct 15; 17(10):1300-11. PubMed ID: 16038804 [Abstract] [Full Text] [Related]
8. The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP, Murphy JE, Alemi F, Cottrell GS, Korbmacher C, Lambert NA, Bunnett NW, Corvera CU. J Biol Chem; 2013 Aug 09; 288(32):22942-60. PubMed ID: 23818521 [Abstract] [Full Text] [Related]
9. Activated human hydroxy-carboxylic acid receptor-3 signals to MAP kinase cascades via the PLC-dependent PKC and MMP-mediated EGFR pathways. Zhou Q, Li G, Deng XY, He XB, Chen LJ, Wu C, Shi Y, Wu KP, Mei LJ, Lu JX, Zhou NM. Br J Pharmacol; 2012 Jul 09; 166(6):1756-73. PubMed ID: 22289163 [Abstract] [Full Text] [Related]
10. Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor "signalsome". Jafri F, El-Shewy HM, Lee MH, Kelly M, Luttrell DK, Luttrell LM. J Biol Chem; 2006 Jul 14; 281(28):19346-57. PubMed ID: 16670094 [Abstract] [Full Text] [Related]
11. Differential effects of beta-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2. Kumar P, Lau CS, Mathur M, Wang P, DeFea KA. Am J Physiol Cell Physiol; 2007 Jul 14; 293(1):C346-57. PubMed ID: 17442737 [Abstract] [Full Text] [Related]
12. Mapping the interaction site for β-arrestin-2 in the prokineticin 2 receptor. Lattanzi R, Casella I, Fullone MR, Vincenzi M, Maftei D, Miele R. Cell Signal; 2024 Jul 14; 119():111175. PubMed ID: 38631405 [Abstract] [Full Text] [Related]
13. Disease-causing mutation in PKR2 receptor reveals a critical role of positive charges in the second intracellular loop for G-protein coupling and receptor trafficking. Peng Z, Tang Y, Luo H, Jiang F, Yang J, Sun L, Li JD. J Biol Chem; 2011 May 13; 286(19):16615-22. PubMed ID: 21454486 [Abstract] [Full Text] [Related]
14. Bombyx adipokinetic hormone receptor activates extracellular signal-regulated kinase 1 and 2 via G protein-dependent PKA and PKC but β-arrestin-independent pathways. Huang H, He X, Deng X, Li G, Ying G, Sun Y, Shi L, Benovic JL, Zhou N. Biochemistry; 2010 Dec 28; 49(51):10862-72. PubMed ID: 21126059 [Abstract] [Full Text] [Related]
15. Formyl peptide receptor-mediated ERK1/2 activation occurs through G(i) and is not dependent on beta-arrestin1/2. Gripentrog JM, Miettinen HM. Cell Signal; 2008 Feb 28; 20(2):424-31. PubMed ID: 18060741 [Abstract] [Full Text] [Related]
17. Phosphorylation of β-arrestin2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crépieux P, Poupon A, Reiter E, Marin P, Vandermoere F. Elife; 2017 Feb 07; 6():. PubMed ID: 28169830 [Abstract] [Full Text] [Related]
18. Identification and pharmacological characterization of prokineticin 2 beta as a selective ligand for prokineticin receptor 1. Chen J, Kuei C, Sutton S, Wilson S, Yu J, Kamme F, Mazur C, Lovenberg T, Liu C. Mol Pharmacol; 2005 Jun 07; 67(6):2070-6. PubMed ID: 15772293 [Abstract] [Full Text] [Related]
19. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. Daaka Y, Luttrell LM, Ahn S, Della Rocca GJ, Ferguson SS, Caron MG, Lefkowitz RJ. J Biol Chem; 1998 Jan 09; 273(2):685-8. PubMed ID: 9422717 [Abstract] [Full Text] [Related]
20. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms. Lai X, Ye L, Liao Y, Jin L, Ma Q, Lu B, Sun Y, Shi Y, Zhou N. J Neurochem; 2016 Apr 09; 137(2):200-15. PubMed ID: 26826667 [Abstract] [Full Text] [Related] Page: [Next] [New Search]