These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
291 related items for PubMed ID: 24514629
1. Single and dual fiber nano-tip optical tweezers: trapping and analysis. Decombe JB, Huant S, Fick J. Opt Express; 2013 Dec 16; 21(25):30521-31. PubMed ID: 24514629 [Abstract] [Full Text] [Related]
2. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing. Liu Y, Yu M. Opt Express; 2009 Aug 03; 17(16):13624-38. PubMed ID: 19654770 [Abstract] [Full Text] [Related]
3. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip. Lin Y, Guo J, Lindquist RG. Opt Express; 2009 Sep 28; 17(20):17849-54. PubMed ID: 19907572 [Abstract] [Full Text] [Related]
4. Photovoltaic versus optical tweezers. Villarroel J, Burgos H, García-Cabañes Á, Carrascosa M, Blázquez-Castro A, Agulló-López F. Opt Express; 2011 Nov 21; 19(24):24320-30. PubMed ID: 22109459 [Abstract] [Full Text] [Related]
11. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Kozawa Y, Sato S. Opt Express; 2010 May 10; 18(10):10828-33. PubMed ID: 20588937 [Abstract] [Full Text] [Related]
12. Dark-field optical tweezers for nanometrology of metallic nanoparticles. Pearce K, Wang F, Reece PJ. Opt Express; 2011 Dec 05; 19(25):25559-69. PubMed ID: 22273949 [Abstract] [Full Text] [Related]
13. Multiple traps created with an inclined dual-fiber system. Liu Y, Yu M. Opt Express; 2009 Nov 23; 17(24):21680-90. PubMed ID: 19997409 [Abstract] [Full Text] [Related]
14. The effect of external forces on discrete motion within holographic optical tweezers. Eriksson E, Keen S, Leach J, Goksör M, Padgett MJ. Opt Express; 2007 Dec 24; 15(26):18268-74. PubMed ID: 19551124 [Abstract] [Full Text] [Related]
15. Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities. Tian F, Zhou G, Du Y, Chau FS, Deng J, Tang X, Akkipeddi R. Opt Express; 2013 Jul 29; 21(15):18398-407. PubMed ID: 23938711 [Abstract] [Full Text] [Related]
16. Numerical study of the properties of optical vortex array laser tweezers. Kuo CF, Chu SC. Opt Express; 2013 Nov 04; 21(22):26418-31. PubMed ID: 24216863 [Abstract] [Full Text] [Related]
17. Trapping light in plasmonic waveguides. Park J, Kim KY, Lee IM, Na H, Lee SY, Lee B. Opt Express; 2010 Jan 18; 18(2):598-623. PubMed ID: 20173880 [Abstract] [Full Text] [Related]
18. Improvement in resolution of laser capture microdissection using near-field probe to capture nanoparticles. Chen CM, Lee JA, Yen CF. IEEE Trans Nanobioscience; 2009 Jun 18; 8(2):113-9. PubMed ID: 19336290 [Abstract] [Full Text] [Related]
19. Copper ion-exchanged channel waveguides optimization for optical trapping. Reshak AH, Khor KN, Shahimin MM, Murad SA. Prog Biophys Mol Biol; 2013 Aug 18; 112(3):118-23. PubMed ID: 23726859 [Abstract] [Full Text] [Related]
20. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. Sarshar M, Wong WT, Anvari B. J Biomed Opt; 2014 Aug 18; 19(11):115001. PubMed ID: 25375348 [Abstract] [Full Text] [Related] Page: [Next] [New Search]