These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


401 related items for PubMed ID: 24521937

  • 1. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H, De Vleesschauwer D, Aziz A, Höfte M.
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C.
    J Plant Physiol; 2015 Mar 01; 175():163-73. PubMed ID: 25543862
    [Abstract] [Full Text] [Related]

  • 4. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
    Audenaert K, De Meyer GB, Höfte MM.
    Plant Physiol; 2002 Feb 01; 128(2):491-501. PubMed ID: 11842153
    [Abstract] [Full Text] [Related]

  • 5. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J, Óscar CS, Emma FC, Pilar GA, Carmen GB.
    Mol Plant Pathol; 2017 Jan 01; 18(1):16-31. PubMed ID: 26780422
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration.
    Zhang MZ, Sun CH, Liu Y, Feng HQ, Chang HW, Cao SN, Li GH, Yang S, Hou J, Zhu-Salzman K, Zhang H, Qin QM.
    Mol Plant Pathol; 2020 Jun 01; 21(6):834-853. PubMed ID: 32301267
    [Abstract] [Full Text] [Related]

  • 14. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.
    Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C.
    Plant J; 2007 Dec 01; 52(6):1027-40. PubMed ID: 17916112
    [Abstract] [Full Text] [Related]

  • 15. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P, Powell AL, Orlando R, Bergmann C, Gutierrez-Sanchez G.
    J Proteome Res; 2012 Apr 06; 11(4):2178-92. PubMed ID: 22364583
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming.
    Smith JE, Mengesha B, Tang H, Mengiste T, Bluhm BH.
    BMC Genomics; 2014 May 03; 15():334. PubMed ID: 24885798
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.