These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 24529395
1. Effects of laser ablated silver nanoparticles on Lemna minor. Üçüncü E, Özkan AD, Kurşungöz C, Ülger ZE, Ölmez TT, Tekinay T, Ortaç B, Tunca E. Chemosphere; 2014 Aug; 108():251-7. PubMed ID: 24529395 [Abstract] [Full Text] [Related]
2. Phytotoxicity of silver nanoparticles to Lemna minor L. Gubbins EJ, Batty LC, Lead JR. Environ Pollut; 2011 Jun; 159(6):1551-9. PubMed ID: 21450381 [Abstract] [Full Text] [Related]
3. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Oukarroum A, Barhoumi L, Pirastru L, Dewez D. Environ Toxicol Chem; 2013 Apr; 32(4):902-7. PubMed ID: 23341248 [Abstract] [Full Text] [Related]
4. Toxicity of nanosilver and fumonisin B1 and their interactions on duckweed (Lemna minor L.). Radić S, Domijan AM, Glavaš Ljubimir K, Maldini K, Ivešić M, Peharec Štefanić P, Krivohlavek A. Chemosphere; 2019 Aug; 229():86-93. PubMed ID: 31078035 [Abstract] [Full Text] [Related]
5. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. Souza LRR, Corrêa TZ, Bruni AT, da Veiga MAMS. Environ Sci Pollut Res Int; 2021 Apr; 28(13):16720-16733. PubMed ID: 33398747 [Abstract] [Full Text] [Related]
6. Differential phytotoxic effect of silver nitrate (AgNO3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). Iannelli MA, Bellini A, Venditti I, Casentini B, Battocchio C, Scalici M, Ceschin S. Aquat Toxicol; 2022 Sep; 250():106260. PubMed ID: 35933908 [Abstract] [Full Text] [Related]
7. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Makama S, Piella J, Undas A, Dimmers WJ, Peters R, Puntes VF, van den Brink NW. Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251 [Abstract] [Full Text] [Related]
8. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Jiang HS, Qiu XN, Li GB, Li W, Yin LY. Environ Toxicol Chem; 2014 Jun; 33(6):1398-405. PubMed ID: 24619507 [Abstract] [Full Text] [Related]
9. Are silver nanoparticles always toxic in the presence of environmental anions? Guo Z, Chen G, Zeng G, Yan M, Huang Z, Jiang L, Peng C, Wang J, Xiao Z. Chemosphere; 2017 Mar; 171():318-323. PubMed ID: 28027476 [Abstract] [Full Text] [Related]
10. Surface charge-dependent toxicity of silver nanoparticles. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Environ Sci Technol; 2011 Jan 01; 45(1):283-7. PubMed ID: 21133412 [Abstract] [Full Text] [Related]
11. Effects of Ag Nanoparticles on Growth and Fat Body Proteins in Silkworms (Bombyx mori). Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K. Biol Trace Elem Res; 2017 Dec 01; 180(2):327-337. PubMed ID: 28361388 [Abstract] [Full Text] [Related]
12. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Ávalos A, Haza AI, Drosopoulou E, Mavragani-Tsipidou P, Morales P. Food Chem Toxicol; 2015 Nov 01; 85():114-9. PubMed ID: 26169716 [Abstract] [Full Text] [Related]
13. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE, Lowry GV. Environ Sci Technol; 2012 Jul 03; 46(13):6992-7000. PubMed ID: 22296331 [Abstract] [Full Text] [Related]
14. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Jiang HS, Yin LY, Ren NN, Zhao ST, Li Z, Zhi Y, Shao H, Li W, Gontero B. Nanotoxicology; 2017 Mar 03; 11(2):157-167. PubMed ID: 28044463 [Abstract] [Full Text] [Related]
15. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Ulm L, Krivohlavek A, Jurašin D, Ljubojević M, Šinko G, Crnković T, Žuntar I, Šikić S, Vinković Vrček I. Environ Sci Pollut Res Int; 2015 Dec 03; 22(24):19990-9. PubMed ID: 26296504 [Abstract] [Full Text] [Related]
16. Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa. Zou X, Li P, Lou J, Zhang H. Aquat Toxicol; 2017 Aug 03; 189():150-158. PubMed ID: 28644992 [Abstract] [Full Text] [Related]
17. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Zhao CM, Wang WX. Nanotoxicology; 2012 Jun 03; 6(4):361-70. PubMed ID: 21591875 [Abstract] [Full Text] [Related]
18. Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Lee YJ, Kim J, Oh J, Bae S, Lee S, Hong IS, Kim SH. Environ Toxicol Chem; 2012 Jan 03; 31(1):155-9. PubMed ID: 22012883 [Abstract] [Full Text] [Related]
19. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X. Sci Total Environ; 2014 Jan 15; 468-469():968-76. PubMed ID: 24091120 [Abstract] [Full Text] [Related]
20. Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos. Gao J, Sepúlveda MS, Klinkhamer C, Wei A, Gao Y, Mahapatra CT. Chemosphere; 2015 Jan 15; 119():948-952. PubMed ID: 25303653 [Abstract] [Full Text] [Related] Page: [Next] [New Search]