These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 24532067

  • 1. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.
    Tilloy V, Ortiz-Julien A, Dequin S.
    Appl Environ Microbiol; 2014 Apr; 80(8):2623-32. PubMed ID: 24532067
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts.
    Varela C, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke PA, Pretorius IS, Chambers PJ.
    Appl Environ Microbiol; 2012 Sep; 78(17):6068-77. PubMed ID: 22729542
    [Abstract] [Full Text] [Related]

  • 3. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S.
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [Abstract] [Full Text] [Related]

  • 4. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.
    Cambon B, Monteil V, Remize F, Camarasa C, Dequin S.
    Appl Environ Microbiol; 2006 Jul; 72(7):4688-94. PubMed ID: 16820460
    [Abstract] [Full Text] [Related]

  • 5. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.
    Caspeta L, Nielsen J.
    mBio; 2015 Jul 21; 6(4):e00431. PubMed ID: 26199325
    [Abstract] [Full Text] [Related]

  • 6. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D.
    Int J Food Microbiol; 2008 Mar 20; 122(3):312-20. PubMed ID: 18262301
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.
    Moreno-García J, García-Martínez T, Millán MC, Mauricio JC, Moreno J.
    Food Microbiol; 2015 Oct 20; 51():1-9. PubMed ID: 26187821
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Insights into intraspecific diversity of central carbon metabolites in Saccharomyces cerevisiae during wine fermentation.
    Monnin L, Nidelet T, Noble J, Galeote V.
    Food Microbiol; 2024 Aug 20; 121():104513. PubMed ID: 38637075
    [Abstract] [Full Text] [Related]

  • 12. Glycerol overproduction by engineered saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase.
    Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S.
    Appl Environ Microbiol; 1999 Jan 20; 65(1):143-9. PubMed ID: 9872772
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response.
    Jiménez-Martí E, Gomar-Alba M, Palacios A, Ortiz-Julien A, del Olmo ML.
    Appl Microbiol Biotechnol; 2011 Mar 20; 89(5):1551-61. PubMed ID: 20941492
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.
    Zara S, Gross MK, Zara G, Budroni M, Bakalinsky AT.
    Appl Environ Microbiol; 2010 Jun 20; 76(12):4089-91. PubMed ID: 20435772
    [Abstract] [Full Text] [Related]

  • 18. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA, Salvadó Z, Tronchoni J, Morales P, Rodrigues AJ, Quirós M, Gonzalez R.
    Microb Cell Fact; 2016 Sep 15; 15(1):156. PubMed ID: 27627879
    [Abstract] [Full Text] [Related]

  • 19. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production.
    Kutyna DR, Varela C, Stanley GA, Borneman AR, Henschke PA, Chambers PJ.
    Appl Microbiol Biotechnol; 2012 Feb 15; 93(3):1175-84. PubMed ID: 21989563
    [Abstract] [Full Text] [Related]

  • 20. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.
    Guadalupe-Medina V, Metz B, Oud B, van Der Graaf CM, Mans R, Pronk JT, van Maris AJ.
    Microb Biotechnol; 2014 Jan 15; 7(1):44-53. PubMed ID: 24004455
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.