These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 2453358

  • 21. Replacing tryptophan-128 of T4 endonuclease V with a serine residue results in decreased enzymatic activity in vitro and in vivo.
    Valerie K.
    Nucleic Acids Res; 1995 Sep 25; 23(18):3764-70. PubMed ID: 7479008
    [Abstract] [Full Text] [Related]

  • 22. Effect of abasic sites on bacteriophage T7 protein synthesis.
    Sanchez G, Racine JF, Mamet-Bratley MD.
    Mutat Res; 1994 Sep 25; 325(1):39-45. PubMed ID: 7521011
    [Abstract] [Full Text] [Related]

  • 23. Recombinational repair is critical for survival of Escherichia coli exposed to nitric oxide.
    Spek EJ, Wright TL, Stitt MS, Taghizadeh NR, Tannenbaum SR, Marinus MG, Engelward BP.
    J Bacteriol; 2001 Jan 25; 183(1):131-8. PubMed ID: 11114909
    [Abstract] [Full Text] [Related]

  • 24. A mutant endonuclease IV of Escherichia coli loses the ability to repair lethal DNA damage induced by hydrogen peroxide but not that induced by methyl methanesulfonate.
    Izumi T, Ishizaki K, Ikenaga M, Yonei S.
    J Bacteriol; 1992 Dec 25; 174(23):7711-6. PubMed ID: 1280256
    [Abstract] [Full Text] [Related]

  • 25. Involvement of DNA lesions and SOS functions in 5-bromouracil-induced mutagenesis.
    Pietrzykowska I, Krych M, Shugar D.
    Mutat Res; 1985 May 25; 149(3):287-96. PubMed ID: 2581129
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Involvement of Escherichia coli exonuclease III and endonuclease IV in the repair of singlet oxygen-induced DNA damage.
    Agnez LF, Costa de Oliveira RL, Di Mascio P, Menck CF.
    Carcinogenesis; 1996 May 25; 17(5):1183-5. PubMed ID: 8640934
    [Abstract] [Full Text] [Related]

  • 28. Bleomycin-induced mutagenesis in repackaged lambda phage: base substitution hotspots at the sequence C-G-C-C.
    Povirk LF.
    Mutat Res; 1987 Sep 25; 180(1):1-9. PubMed ID: 2442605
    [Abstract] [Full Text] [Related]

  • 29. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4.
    Liuzzi M, Weinfeld M, Paterson MC.
    Biochemistry; 1987 Jun 16; 26(12):3315-21. PubMed ID: 2443160
    [Abstract] [Full Text] [Related]

  • 30. Endonuclease-resistant apyrimidinic sites formed by neocarzinostatin at cytosine residues in DNA: evidence for a possible role in mutagenesis.
    Povirk LF, Goldberg IH.
    Proc Natl Acad Sci U S A; 1985 May 16; 82(10):3182-6. PubMed ID: 2582408
    [Abstract] [Full Text] [Related]

  • 31. Normal processing of AP sites in Apn1-deficient Saccharomyces cerevisiae is restored by Escherichia coli genes expressing either exonuclease III or endonuclease III.
    Masson JY, Ramotar D.
    Mol Microbiol; 1997 May 16; 24(4):711-21. PubMed ID: 9194699
    [Abstract] [Full Text] [Related]

  • 32. The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis.
    Bennett RA.
    Mol Cell Biol; 1999 Mar 16; 19(3):1800-9. PubMed ID: 10022867
    [Abstract] [Full Text] [Related]

  • 33. Loss of an apurinic/apyrimidinic site endonuclease increases the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine to Escherichia coli.
    Foster PL, Davis EF.
    Proc Natl Acad Sci U S A; 1987 May 16; 84(9):2891-5. PubMed ID: 2437587
    [Abstract] [Full Text] [Related]

  • 34. Contribution of E. coli AlkA, TagA glycosylases and UvrABC-excinuclease in MMS mutagenesis.
    Grzesiuk E, Gozdek A, Tudek B.
    Mutat Res; 2001 Sep 01; 480-481():77-84. PubMed ID: 11506801
    [Abstract] [Full Text] [Related]

  • 35. A mouse DNA repair enzyme (APEX nuclease) having exonuclease and apurinic/apyrimidinic endonuclease activities: purification and characterization.
    Seki S, Ikeda S, Watanabe S, Hatsushika M, Tsutsui K, Akiyama K, Zhang B.
    Biochim Biophys Acta; 1991 Aug 09; 1079(1):57-64. PubMed ID: 1716153
    [Abstract] [Full Text] [Related]

  • 36. Roles of uracil-DNA glycosylase and apyrimidinic endonucleases in the molecular 5-bromo-2'-deoxyuridine photosensitization in Escherichia coli K-12.
    Yamamoto Y, Fujiwara Y.
    Photochem Photobiol; 1993 Jul 09; 58(1):66-70. PubMed ID: 7690977
    [Abstract] [Full Text] [Related]

  • 37. Pyrimidine dimer-DNA glycosylases: studies on bacteriophage T4-infected and on uninfected Escherichia coli.
    Bonura T, Radany EH, McMillan S, Love JD, Schultz RA, Edenberg HJ, Friedberg EC.
    Biochimie; 1982 Jul 09; 64(8-9):643-54. PubMed ID: 6753948
    [Abstract] [Full Text] [Related]

  • 38. Repair of AP sites in DNA.
    Verly WG.
    Biochimie; 1982 Jul 09; 64(8-9):603-5. PubMed ID: 6814509
    [Abstract] [Full Text] [Related]

  • 39. Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA.
    Warner HR, Demple BF, Deutsch WA, Kane CM, Linn S.
    Proc Natl Acad Sci U S A; 1980 Aug 09; 77(8):4602-6. PubMed ID: 6254032
    [Abstract] [Full Text] [Related]

  • 40. The relative importance of Escherichia coli exonuclease III and endonuclease IV for the hydrolysis of 3'-phosphoglycolate ends in polydeoxynucleotides.
    Siwek B, Bricteux-Grégoire S, Bailly V, Verly WG.
    Nucleic Acids Res; 1988 Jun 10; 16(11):5031-8. PubMed ID: 2455278
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.