These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1148 related items for PubMed ID: 24534172

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions.
    Horikawa K, Minami Y, Iijima M, Akiyama M, Shibata S.
    Neuroscience; 2005; 134(1):335-43. PubMed ID: 15961241
    [Abstract] [Full Text] [Related]

  • 25. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A, Gu C, van Engeldorp Gastelaars HM, Michel S, Deboer T, Rohling JH, Meijer JH.
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [Abstract] [Full Text] [Related]

  • 26. Daily rhythms in adrenal responsiveness to adrenocorticotropin are determined primarily by the time of feeding in the rat.
    Wilkinson CW, Shinsako J, Dallman MF.
    Endocrinology; 1979 Feb; 104(2):350-9. PubMed ID: 221174
    [Abstract] [Full Text] [Related]

  • 27. Feeding time synchronizes clock gene rhythmic expression in brain and liver of goldfish (Carassius auratus).
    Feliciano A, Vivas Y, de Pedro N, Delgado MJ, Velarde E, Isorna E.
    J Biol Rhythms; 2011 Feb; 26(1):24-33. PubMed ID: 21252363
    [Abstract] [Full Text] [Related]

  • 28. Nucleus-specific effects of meal duration on daily profiles of Period1 and Period2 protein expression in rats housed under restricted feeding.
    Verwey M, Amir S.
    Neuroscience; 2011 Sep 29; 192():304-11. PubMed ID: 21767615
    [Abstract] [Full Text] [Related]

  • 29. Brief access to sucrose engages food-entrainable rhythms in food-deprived rats.
    Pecoraro N, Gomez F, Laugero K, Dallman MF.
    Behav Neurosci; 2002 Oct 29; 116(5):757-76. PubMed ID: 12369798
    [Abstract] [Full Text] [Related]

  • 30. Food-reward signalling in the suprachiasmatic clock.
    Mendoza J, Clesse D, Pévet P, Challet E.
    J Neurochem; 2010 Mar 29; 112(6):1489-99. PubMed ID: 20067576
    [Abstract] [Full Text] [Related]

  • 31. Feeding entrainment of daily rhythms of locomotor activity and clock gene expression in zebrafish brain.
    Sanchez JA, Sanchez-Vazquez FJ.
    Chronobiol Int; 2009 Aug 29; 26(6):1120-35. PubMed ID: 19731109
    [Abstract] [Full Text] [Related]

  • 32. Daily rhythms in activity and mRNA abundance of enzymes involved in glucose and lipid metabolism in liver of rainbow trout, Oncorhynchus mykiss. Influence of light and food availability.
    Hernández-Pérez J, Míguez JM, Librán-Pérez M, Otero-Rodiño C, Naderi F, Soengas JL, López-Patiño MA.
    Chronobiol Int; 2015 Aug 29; 32(10):1391-408. PubMed ID: 26587750
    [Abstract] [Full Text] [Related]

  • 33. Combination of starvation interval and food volume determines the phase of liver circadian rhythm in Per2::Luc knock-in mice under two meals per day feeding.
    Hirao A, Nagahama H, Tsuboi T, Hirao M, Tahara Y, Shibata S.
    Am J Physiol Gastrointest Liver Physiol; 2010 Nov 29; 299(5):G1045-53. PubMed ID: 20847299
    [Abstract] [Full Text] [Related]

  • 34. Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata).
    López-Olmeda JF, Montoya A, Oliveira C, Sánchez-Vázquez FJ.
    Chronobiol Int; 2009 Oct 29; 26(7):1389-408. PubMed ID: 19916838
    [Abstract] [Full Text] [Related]

  • 35. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS, Yamazaki S.
    Physiol Behav; 2014 Apr 10; 128():92-8. PubMed ID: 24530262
    [Abstract] [Full Text] [Related]

  • 36. Circadian mechanisms of food anticipatory rhythms in rats fed once or twice daily: clock gene and endocrine correlates.
    Patton DF, Katsuyama AM, Pavlovski I, Michalik M, Patterson Z, Parfyonov M, Smit AN, Marchant EG, Chung SH, Abizaid A, Storch KF, de la Iglesia H, Mistlberger RE.
    PLoS One; 2014 Apr 10; 9(12):e112451. PubMed ID: 25502949
    [Abstract] [Full Text] [Related]

  • 37. Circadian misalignment alters insulin sensitivity during the light phase and shifts glucose tolerance rhythms in female mice.
    Zhong LX, Li XN, Yang GY, Zhang X, Li WX, Zhang QQ, Pan HX, Zhang HH, Zhou MY, Wang YD, Zhang WW, Hu QS, Zhu W, Zhang B.
    PLoS One; 2019 Apr 10; 14(12):e0225813. PubMed ID: 31851682
    [Abstract] [Full Text] [Related]

  • 38. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach.
    Mazzoccoli G, Francavilla M, Pazienza V, Benegiamo G, Piepoli A, Vinciguerra M, Giuliani F, Yamamoto T, Takumi T.
    Chronobiol Int; 2012 Dec 10; 29(10):1300-11. PubMed ID: 23131081
    [Abstract] [Full Text] [Related]

  • 39. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils.
    Weinert D, Weinandy R, Gattermann R.
    Physiol Behav; 2007 Feb 28; 90(2-3):325-33. PubMed ID: 17084868
    [Abstract] [Full Text] [Related]

  • 40. Timed high-fat diet resets circadian metabolism and prevents obesity.
    Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O.
    FASEB J; 2012 Aug 28; 26(8):3493-502. PubMed ID: 22593546
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 58.