These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus. Sosniyenko S, Hut RA, Daan S, Sumová A. Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112 [Abstract] [Full Text] [Related]
43. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. Nováková M, Sládek M, Sumová A. J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815 [Abstract] [Full Text] [Related]
44. Daily rhythms of clock gene expression and feeding behavior during the larval development in gilthead seabream, Sparus aurata. Mata-Sotres JA, Martínez-Rodríguez G, Pérez-Sánchez J, Sánchez-Vázquez FJ, Yúfera M. Chronobiol Int; 2015 Oct; 32(8):1061-74. PubMed ID: 26317659 [Abstract] [Full Text] [Related]
45. Food availability affects circadian clock-controlled activity and Zugunruhe in the night migratory male blackheaded bunting (Emberiza melanocephala). Singh J, Rastogi A, Rani S, Kumar V. Chronobiol Int; 2012 Feb; 29(1):15-25. PubMed ID: 22217097 [Abstract] [Full Text] [Related]
46. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats. Eggink HM, Oosterman JE, de Goede P, de Vries EM, Foppen E, Koehorst M, Groen AK, Boelen A, Romijn JA, la Fleur SE, Soeters MR, Kalsbeek A. Chronobiol Int; 2017 Feb; 34(10):1339-1353. PubMed ID: 29028359 [Abstract] [Full Text] [Related]
47. Circadian clocks for all meal-times: anticipation of 2 daily meals in rats. Mistlberger RE, Kent BA, Chan S, Patton DF, Weinberg A, Parfyonov M. PLoS One; 2012 Feb; 7(2):e31772. PubMed ID: 22355393 [Abstract] [Full Text] [Related]
48. Controlling access time to a high-fat diet during the inactive period protects against obesity in mice. Haraguchi A, Aoki N, Ohtsu T, Ikeda Y, Tahara Y, Shibata S. Chronobiol Int; 2014 Oct; 31(8):935-44. PubMed ID: 24984029 [Abstract] [Full Text] [Related]
49. Metabolic influences on circadian rhythmicity in Siberian and Syrian hamsters exposed to long photoperiods. Challet E, Kolker DE, Turek FW. J Neuroendocrinol; 2000 Jan; 12(1):69-78. PubMed ID: 10692145 [Abstract] [Full Text] [Related]
50. Glucose tolerance in fish: Is the daily feeding time important? López-Olmeda JF, Egea-Alvarez M, Sánchez-Vázquez FJ. Physiol Behav; 2009 Mar 23; 96(4-5):631-6. PubMed ID: 19150450 [Abstract] [Full Text] [Related]
51. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice. Castillo C, Molyneux P, Carlson R, Harrington ME. Neuroscience; 2011 May 19; 182():169-76. PubMed ID: 21392557 [Abstract] [Full Text] [Related]
52. The effect of various photoperiods on daily oscillations of serum corticosterone and insulin in rats. Ahlersová E, Ahlers I, Smajda B, Kassayová M. Physiol Res; 1992 May 19; 41(4):315-21. PubMed ID: 1286099 [Abstract] [Full Text] [Related]
53. Daily rhythms of lipid metabolic gene expression in zebra fish liver: Response to light/dark and feeding cycles. Paredes JF, López-Olmeda JF, Martínez FJ, Sánchez-Vázquez FJ. Chronobiol Int; 2015 May 19; 32(10):1438-48. PubMed ID: 26595085 [Abstract] [Full Text] [Related]
54. Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Mendoza J, Albrecht U, Challet E. Genes Brain Behav; 2010 Jul 19; 9(5):467-77. PubMed ID: 20180860 [Abstract] [Full Text] [Related]
55. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus. Lahmam M, El M'rabet A, Ouarour A, Pévet P, Challet E, Vuillez P. Chronobiol Int; 2008 Nov 19; 25(6):882-904. PubMed ID: 19005894 [Abstract] [Full Text] [Related]
56. Acute stress response in gilthead sea bream (Sparus aurata L.) is time-of-day dependent: Physiological and oxidative stress indicators. Vera LM, Montoya A, Pujante IM, Pérez-Sánchez J, Calduch-Giner JA, Mancera JM, Moliner J, Sánchez-Vázquez FJ. Chronobiol Int; 2014 Nov 19; 31(9):1051-61. PubMed ID: 25102424 [Abstract] [Full Text] [Related]
57. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei). Santos ADA, López-Olmeda JF, Sánchez-Vázquez FJ, Fortes-Silva R. Comp Biochem Physiol A Mol Integr Physiol; 2016 Sep 19; 199():54-61. PubMed ID: 27155052 [Abstract] [Full Text] [Related]
58. Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions. Lax P, Zamora S, Madrid JA. Chronobiol Int; 1999 May 19; 16(3):281-91. PubMed ID: 10373098 [Abstract] [Full Text] [Related]
59. A sex difference in circadian food-anticipatory rhythms in mice: Interaction with dopamine D1 receptor knockout. Michalik M, Steele AD, Mistlberger RE. Behav Neurosci; 2015 Jun 19; 129(3):351-60. PubMed ID: 26030433 [Abstract] [Full Text] [Related]
60. High-fat feeding alters the clock synchronization to light. Mendoza J, Pévet P, Challet E. J Physiol; 2008 Dec 15; 586(24):5901-10. PubMed ID: 18936083 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]