These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 24552

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Glucose uptake by Chlorella vulgaris: the coupling of protonmotive potential difference to glucose transport.
    Komor E.
    Biochem Soc Trans; 1980 Dec; 8(6):681-3. PubMed ID: 7461251
    [No Abstract] [Full Text] [Related]

  • 3. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system.
    Grüneberg A, Komor E.
    Biochim Biophys Acta; 1976 Sep 21; 448(1):133-42. PubMed ID: 9152
    [Abstract] [Full Text] [Related]

  • 4. Rapid release of free fatty acids during cell breakage and their effects on a sugar-proton cotransport system in Chlorella vulgaris.
    Decker M, Tanner W.
    FEBS Lett; 1975 Dec 15; 60(2):346-8. PubMed ID: 1227976
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport.
    Komor E, Tanner W.
    Eur J Biochem; 1976 Nov 01; 70(1):197-204. PubMed ID: 12943
    [Abstract] [Full Text] [Related]

  • 10. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system.
    Komor E, Tanner W.
    J Gen Physiol; 1974 Nov 01; 64(5):568-81. PubMed ID: 4443792
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Transformed BHK cells exhibiting normal or subnormal sugar uptake.
    Moolten FL, Moolten DN, Capparell NJ.
    J Cell Physiol; 1977 Oct 01; 93(1):147-52. PubMed ID: 908737
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Transport and metabolism of 2-deoxy-D-glucose by Rhodotorula glutinis.
    Woost PG, Griffin CC.
    Biochim Biophys Acta; 1984 Apr 16; 803(4):284-9. PubMed ID: 6422996
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Stimulation of 2-deoxy-d-glucose transport in control and virus-transformed cells by ethidium bromide.
    Soslau G, Nass MM.
    J Cell Physiol; 1975 Oct 16; 86(2 Pt 1):269-80. PubMed ID: 409
    [Abstract] [Full Text] [Related]

  • 18. Selective inhibition of the facilitated mode of sugar uptake by cytochalasin B in cultured chick fibroblasts.
    Dolberg DS, Bassham JA, Bissell MJ.
    Exp Cell Res; 1975 Nov 16; 96(1):129-37. PubMed ID: 1193165
    [No Abstract] [Full Text] [Related]

  • 19. Concentrative accumulation (active transport) of 2-deoxy-D-glucose in primate fibroblasts.
    Tsuboi KK, Petricciani JC.
    Biochem Biophys Res Commun; 1975 Feb 03; 62(3):587-93. PubMed ID: 1168055
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.