These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 24562327
1. Two-step production of D-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Tsuge Y, Kawaguchi H, Sasaki K, Tanaka T, Kondo A. Appl Microbiol Biotechnol; 2014 Jun; 98(11):4911-8. PubMed ID: 24562327 [Abstract] [Full Text] [Related]
2. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Zhang Y, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A. Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970 [Abstract] [Full Text] [Related]
3. Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum. Okano K, Hama S, Kihara M, Noda H, Tanaka T, Kondo A. Appl Microbiol Biotechnol; 2017 Mar; 101(5):1869-1875. PubMed ID: 27832309 [Abstract] [Full Text] [Related]
4. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Yoshida S, Okano K, Tanaka T, Ogino C, Kondo A. Appl Microbiol Biotechnol; 2011 Oct; 92(1):67-76. PubMed ID: 21643702 [Abstract] [Full Text] [Related]
5. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum. Zhang Y, Kumar A, Hardwidge PR, Tanaka T, Kondo A, Vadlani PV. Biotechnol Prog; 2016 Mar; 32(2):271-8. PubMed ID: 26700935 [Abstract] [Full Text] [Related]
6. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. Lu H, Zhao X, Wang Y, Ding X, Wang J, Garza E, Manow R, Iverson A, Zhou S. BMC Biotechnol; 2016 Feb 19; 16():19. PubMed ID: 26895857 [Abstract] [Full Text] [Related]
7. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Taniguchi M, Tokunaga T, Horiuchi K, Hoshino K, Sakai K, Tanaka T. Appl Microbiol Biotechnol; 2004 Dec 19; 66(2):160-5. PubMed ID: 15558273 [Abstract] [Full Text] [Related]
8. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch. Okano K, Uematsu G, Hama S, Tanaka T, Noda H, Kondo A, Honda K. Biotechnol J; 2018 May 19; 13(5):e1700517. PubMed ID: 29393585 [Abstract] [Full Text] [Related]
9. D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A. Appl Microbiol Biotechnol; 2010 Jan 19; 85(3):643-50. PubMed ID: 19597813 [Abstract] [Full Text] [Related]
10. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Zhang Y, Vadlani PV. J Biosci Bioeng; 2015 Jun 19; 119(6):694-9. PubMed ID: 25561329 [Abstract] [Full Text] [Related]
11. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. Siragusa S, De Angelis M, Calasso M, Campanella D, Minervini F, Di Cagno R, Gobbetti M. J Proteomics; 2014 Jan 16; 96():366-80. PubMed ID: 24231110 [Abstract] [Full Text] [Related]
12. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum. Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. Appl Environ Microbiol; 2009 Dec 16; 75(24):7858-61. PubMed ID: 19820147 [Abstract] [Full Text] [Related]
13. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue. Coghetto CC, Vasconcelos CB, Brinques GB, Ayub MA. Braz J Microbiol; 2016 Dec 16; 47(4):941-948. PubMed ID: 27522926 [Abstract] [Full Text] [Related]
14. [Optimization of plantaricin production by Lactobacillus plantarum ZJ316]. Li J, Song D, Gu Q. Wei Sheng Wu Xue Bao; 2008 Jun 16; 48(6):818-23. PubMed ID: 18720849 [Abstract] [Full Text] [Related]
15. Development of a minimal growth medium for Lactobacillus plantarum. Wegkamp A, Teusink B, de Vos WM, Smid EJ. Lett Appl Microbiol; 2010 Jan 16; 50(1):57-64. PubMed ID: 19874488 [Abstract] [Full Text] [Related]
16. Pre-alcoholic fermentation acidification of red grape must using Lactobacillus plantarum. Onetto CA, Bordeu E. Antonie Van Leeuwenhoek; 2015 Dec 16; 108(6):1469-1475. PubMed ID: 26437637 [Abstract] [Full Text] [Related]
17. Influence of polysaccharides on oxygen dependent lactate utilization by an amylolytic Lactobacillus plantarum strain. Pintado J, Raimbault M, Guyot JP. Int J Food Microbiol; 2005 Jan 15; 98(1):81-8. PubMed ID: 15617803 [Abstract] [Full Text] [Related]
18. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF. Appl Microbiol Biotechnol; 2002 Oct 15; 60(1-2):160-7. PubMed ID: 12382058 [Abstract] [Full Text] [Related]
19. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Tashiro Y, Kaneko W, Sun Y, Shibata K, Inokuma K, Zendo T, Sonomoto K. Appl Microbiol Biotechnol; 2011 Mar 15; 89(6):1741-50. PubMed ID: 21165615 [Abstract] [Full Text] [Related]
20. Enhanced production of d-lactate from mixed sugars in Corynebacterium glutamicum by overexpression of glycolytic genes encoding phosphofructokinase and triosephosphate isomerase. Tsuge Y, Kato N, Yamamoto S, Suda M, Inui M. J Biosci Bioeng; 2019 Mar 15; 127(3):288-293. PubMed ID: 30196009 [Abstract] [Full Text] [Related] Page: [Next] [New Search]