These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
292 related items for PubMed ID: 24563009
1. Quasiparticle self-consistent GW method for the spectral properties of complex materials. Bruneval F, Gatti M. Top Curr Chem; 2014; 347():99-135. PubMed ID: 24563009 [Abstract] [Full Text] [Related]
2. Quasiparticle self-consistent GW theory. van Schilfgaarde M, Kotani T, Faleev S. Phys Rev Lett; 2006 Jun 09; 96(22):226402. PubMed ID: 16803332 [Abstract] [Full Text] [Related]
4. Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies. Bruneval F. J Chem Phys; 2012 May 21; 136(19):194107. PubMed ID: 22612080 [Abstract] [Full Text] [Related]
7. Quasiparticle Self-Consistent GW Study of Simple Metals. Friedrich C, Blügel S, Nabok D. Nanomaterials (Basel); 2022 Oct 18; 12(20):. PubMed ID: 36296848 [Abstract] [Full Text] [Related]
8. Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Shishkin M, Marsman M, Kresse G. Phys Rev Lett; 2007 Dec 14; 99(24):246403. PubMed ID: 18233465 [Abstract] [Full Text] [Related]
10. Model GW study of the late transition metal monoxides. Ye LH, Asahi R, Peng LM, Freeman AJ. J Chem Phys; 2012 Oct 21; 137(15):154110. PubMed ID: 23083151 [Abstract] [Full Text] [Related]
11. Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark. Liao P, Carter EA. Phys Chem Chem Phys; 2011 Sep 07; 13(33):15189-99. PubMed ID: 21761032 [Abstract] [Full Text] [Related]
12. Benchmarking the Starting Points of the GW Approximation for Molecules. Bruneval F, Marques MA. J Chem Theory Comput; 2013 Jan 08; 9(1):324-9. PubMed ID: 26589035 [Abstract] [Full Text] [Related]
15. Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO-, TiO-, CuO-, and ZnO. Byun YM, Öğüt S. J Chem Phys; 2019 Oct 07; 151(13):134305. PubMed ID: 31594362 [Abstract] [Full Text] [Related]
16. Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses. Tomczak JM, van Schilfgaarde M, Kotliar G. Phys Rev Lett; 2012 Dec 07; 109(23):237010. PubMed ID: 23368252 [Abstract] [Full Text] [Related]
17. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model. Kutepov AL. J Phys Condens Matter; 2015 Aug 12; 27(31):315603. PubMed ID: 26199232 [Abstract] [Full Text] [Related]
18. Quasiparticle band structures and optical properties of magnesium fluoride. Yi Z, Jia R. J Phys Condens Matter; 2012 Feb 29; 24(8):085602. PubMed ID: 22277330 [Abstract] [Full Text] [Related]
19. Accurate band gaps and dielectric properties from one-electron theories (abstract only). Kresse G, Shishkin M, Marsman M, Paier J. J Phys Condens Matter; 2008 Feb 13; 20(6):064203. PubMed ID: 21693865 [Abstract] [Full Text] [Related]
20. Magnetic force theory combined with quasi-particle self-consistent GW method. Yoon H, Jang SW, Sim JH, Kotani T, Han MJ. J Phys Condens Matter; 2019 Oct 09; 31(40):405503. PubMed ID: 31220821 [Abstract] [Full Text] [Related] Page: [Next] [New Search]