These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


259 related items for PubMed ID: 24563461

  • 1. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA, Farhat M, Klostermeier D.
    J Biol Chem; 2014 May 02; 289(18):12275-85. PubMed ID: 24563461
    [Abstract] [Full Text] [Related]

  • 2. The GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle.
    Lanz MA, Klostermeier D.
    Nucleic Acids Res; 2012 Nov 02; 40(21):10893-903. PubMed ID: 22977179
    [Abstract] [Full Text] [Related]

  • 3. Gyrase containing a single C-terminal domain catalyzes negative supercoiling of DNA by decreasing the linking number in steps of two.
    Stelljes JT, Weidlich D, Gubaev A, Klostermeier D.
    Nucleic Acids Res; 2018 Jul 27; 46(13):6773-6784. PubMed ID: 29893908
    [Abstract] [Full Text] [Related]

  • 4. Binding and Hydrolysis of a Single ATP Is Sufficient for N-Gate Closure and DNA Supercoiling by Gyrase.
    Hartmann S, Gubaev A, Klostermeier D.
    J Mol Biol; 2017 Nov 24; 429(23):3717-3729. PubMed ID: 29032205
    [Abstract] [Full Text] [Related]

  • 5. DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.
    Gubaev A, Klostermeier D.
    Proc Natl Acad Sci U S A; 2011 Aug 23; 108(34):14085-90. PubMed ID: 21817063
    [Abstract] [Full Text] [Related]

  • 6. Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle.
    Lanz MA, Klostermeier D.
    Nucleic Acids Res; 2011 Dec 23; 39(22):9681-94. PubMed ID: 21880594
    [Abstract] [Full Text] [Related]

  • 7. Functional interactions between gyrase subunits are optimized in a species-specific manner.
    Weidlich D, Klostermeier D.
    J Biol Chem; 2020 Feb 21; 295(8):2299-2312. PubMed ID: 31953321
    [Abstract] [Full Text] [Related]

  • 8. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A, Klostermeier D.
    DNA Repair (Amst); 2014 Apr 21; 16():23-34. PubMed ID: 24674625
    [Abstract] [Full Text] [Related]

  • 9. Why Two? On the Role of (A-)Symmetry in Negative Supercoiling of DNA by Gyrase.
    Klostermeier D.
    Int J Mol Sci; 2018 May 16; 19(5):. PubMed ID: 29772727
    [Abstract] [Full Text] [Related]

  • 10. The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction.
    Gubaev A, Hilbert M, Klostermeier D.
    Proc Natl Acad Sci U S A; 2009 Aug 11; 106(32):13278-83. PubMed ID: 19666507
    [Abstract] [Full Text] [Related]

  • 11. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism.
    Gubaev A, Weidlich D, Klostermeier D.
    Nucleic Acids Res; 2016 Dec 01; 44(21):10354-10366. PubMed ID: 27557712
    [Abstract] [Full Text] [Related]

  • 12. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity.
    Tretter EM, Berger JM.
    J Biol Chem; 2012 May 25; 287(22):18636-44. PubMed ID: 22457353
    [Abstract] [Full Text] [Related]

  • 13. Modulated control of DNA supercoiling balance by the DNA-wrapping domain of bacterial gyrase.
    Hobson MJ, Bryant Z, Berger JM.
    Nucleic Acids Res; 2020 Feb 28; 48(4):2035-2049. PubMed ID: 31950157
    [Abstract] [Full Text] [Related]

  • 14. Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance.
    Gross CH, Parsons JD, Grossman TH, Charifson PS, Bellon S, Jernee J, Dwyer M, Chambers SP, Markland W, Botfield M, Raybuck SA.
    Antimicrob Agents Chemother; 2003 Mar 28; 47(3):1037-46. PubMed ID: 12604539
    [Abstract] [Full Text] [Related]

  • 15. Dissection of the nucleotide cycle of B. subtilis DNA gyrase and its modulation by DNA.
    Göttler T, Klostermeier D.
    J Mol Biol; 2007 Apr 13; 367(5):1392-404. PubMed ID: 17320901
    [Abstract] [Full Text] [Related]

  • 16. The "GyrA-box" is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction.
    Kramlinger VM, Hiasa H.
    J Biol Chem; 2006 Feb 10; 281(6):3738-42. PubMed ID: 16332690
    [Abstract] [Full Text] [Related]

  • 17. Mapping the spectrum of conformational states of the DNA- and C-gates in Bacillus subtilis gyrase.
    Rudolph MG, Klostermeier D.
    J Mol Biol; 2013 Aug 09; 425(15):2632-40. PubMed ID: 23602808
    [Abstract] [Full Text] [Related]

  • 18. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP, Klostermeier D.
    J Mol Biol; 2007 Aug 03; 371(1):197-209. PubMed ID: 17560602
    [Abstract] [Full Text] [Related]

  • 19. Potassium ions are required for nucleotide-induced closure of gyrase N-gate.
    Gubaev A, Klostermeier D.
    J Biol Chem; 2012 Mar 30; 287(14):10916-21. PubMed ID: 22343632
    [Abstract] [Full Text] [Related]

  • 20. A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function.
    Schoeffler AJ, May AP, Berger JM.
    Nucleic Acids Res; 2010 Nov 30; 38(21):7830-44. PubMed ID: 20675723
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.