These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


113 related items for PubMed ID: 24569013

  • 1. Large neurotoxic amygdala lesion impairs reinforcement omission effects.
    Tavares TF, Judice-Daher DM, Bueno JL.
    Behav Brain Res; 2014 Jun 01; 266():1-6. PubMed ID: 24569013
    [Abstract] [Full Text] [Related]

  • 2. Involvement of the basolateral complex and central nucleus of amygdala in the omission effects of different magnitudes of reinforcement.
    Judice-Daher DM, Tavares TF, Bueno JL.
    Behav Brain Res; 2012 Jul 15; 233(1):149-56. PubMed ID: 22569572
    [Abstract] [Full Text] [Related]

  • 3. Lesions of the nucleus accumbens disrupt reinforcement omission effects in rats.
    Judice-Daher DM, Bueno JL.
    Behav Brain Res; 2013 Sep 01; 252():439-43. PubMed ID: 23796973
    [Abstract] [Full Text] [Related]

  • 4. Reinforcement omission effects in rats with bilateral lesions in the substantia nigra pars compacta and ventral tegmental area.
    Tavares TF, Judice-Daher DM, Bueno JLO.
    Braz J Med Biol Res; 2019 Sep 01; 52(7):e8303. PubMed ID: 31291382
    [Abstract] [Full Text] [Related]

  • 5. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.
    Orsini CA, Trotta RT, Bizon JL, Setlow B.
    J Neurosci; 2015 Jan 28; 35(4):1368-79. PubMed ID: 25632115
    [Abstract] [Full Text] [Related]

  • 6. Goal-directed responding is sensitive to lesions to the prelimbic cortex or basolateral nucleus of the amygdala but not to their disconnection.
    Coutureau E, Marchand AR, Di Scala G.
    Behav Neurosci; 2009 Apr 28; 123(2):443-8. PubMed ID: 19331467
    [Abstract] [Full Text] [Related]

  • 7. Reward loss and the basolateral amygdala: A function in reward comparisons.
    Kawasaki K, Annicchiarico I, Glueck AC, Morón I, Papini MR.
    Behav Brain Res; 2017 Jul 28; 331():205-213. PubMed ID: 28511980
    [Abstract] [Full Text] [Related]

  • 8. Influence of the reinforcement magnitude on omission effects.
    Judice-Daher DM, Tavares TF, Bueno JL.
    Behav Processes; 2011 Sep 28; 88(1):60-2. PubMed ID: 21736926
    [Abstract] [Full Text] [Related]

  • 9. Role of glutamate receptors of central and basolateral amygdala nuclei on retrieval and reconsolidation of taste aversive memory.
    Garcia-Delatorre P, Pérez-Sánchez C, Guzmán-Ramos K, Bermúdez-Rattoni F.
    Neurobiol Learn Mem; 2014 May 28; 111():35-40. PubMed ID: 24631645
    [Abstract] [Full Text] [Related]

  • 10. Differential involvement of medial prefrontal cortex and basolateral amygdala extracellular signal-regulated kinase in extinction of conditioned taste aversion is dependent on different intervals of extinction following conditioning.
    Lin PY, Wang SP, Tai MY, Tsai YF.
    Neuroscience; 2010 Nov 24; 171(1):125-33. PubMed ID: 20826200
    [Abstract] [Full Text] [Related]

  • 11. Bidirectional Control of Social Behavior by Activity within Basolateral and Central Amygdala of Primates.
    Wellman LL, Forcelli PA, Aguilar BL, Malkova L.
    J Neurosci; 2016 Aug 17; 36(33):8746-56. PubMed ID: 27535919
    [Abstract] [Full Text] [Related]

  • 12. Basolateral amygdalar D2 receptor activation is required for the companions-exerted suppressive effect on the cocaine conditioning.
    Tzeng WY, Cherng CG, Yu L, Wang CY.
    Neurobiol Learn Mem; 2017 Jan 17; 137():48-55. PubMed ID: 27845187
    [Abstract] [Full Text] [Related]

  • 13. Effects of lesions in different nuclei of the amygdala on conditioned taste aversion.
    Molero-Chamizo A, Rivera-Urbina GN.
    Exp Brain Res; 2017 Nov 17; 235(11):3517-3526. PubMed ID: 28861596
    [Abstract] [Full Text] [Related]

  • 14. Central, but not basolateral, amygdala is critical for control of feeding by aversive learned cues.
    Petrovich GD, Ross CA, Mody P, Holland PC, Gallagher M.
    J Neurosci; 2009 Dec 02; 29(48):15205-12. PubMed ID: 19955373
    [Abstract] [Full Text] [Related]

  • 15. [Internal inhibition in rats after destruction of amygdaloid complex nuclei].
    Bogach PG, Makarchuk NE, Chaĭchenko GM.
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1981 Dec 02; 31(4):771-9. PubMed ID: 7303899
    [Abstract] [Full Text] [Related]

  • 16. Basolateral amygdalar inactivation blocks chronic stress-induced lamina-specific reduction in prefrontal cortex volume and associated anxiety-like behavior.
    Tripathi SJ, Chakraborty S, Srikumar BN, Raju TR, Shankaranarayana Rao BS.
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Jan 10; 88():194-207. PubMed ID: 30036565
    [Abstract] [Full Text] [Related]

  • 17. Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors.
    Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S.
    Neuron; 2017 Mar 22; 93(6):1464-1479.e5. PubMed ID: 28334609
    [Abstract] [Full Text] [Related]

  • 18. Involvement of basolateral nucleus & central nucleus of amygdala in the regulation of ingestive behaviour in rat.
    Ganaraj B, Jeganathan PS.
    Indian J Med Res; 1998 Sep 22; 108():98-103. PubMed ID: 9798336
    [Abstract] [Full Text] [Related]

  • 19. The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior.
    McLaughlin RJ, Floresco SB.
    Neuroscience; 2007 Jun 08; 146(4):1484-94. PubMed ID: 17449185
    [Abstract] [Full Text] [Related]

  • 20. Bar pressing for food: differential consequences of lesions to the anterior versus posterior pedunculopontine.
    Wilson DI, MacLaren DA, Winn P.
    Eur J Neurosci; 2009 Aug 08; 30(3):504-13. PubMed ID: 19614747
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.