These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
399 related items for PubMed ID: 24571487
1. Inhibition of mTORC1 induces loss of E-cadherin through AKT/GSK-3β signaling-mediated upregulation of E-cadherin repressor complexes in non-small cell lung cancer cells. Kim EY, Kim A, Kim SK, Kim HJ, Chang J, Ahn CM, Chang YS. Respir Res; 2014 Feb 26; 15(1):26. PubMed ID: 24571487 [Abstract] [Full Text] [Related]
2. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells. Jiang S, Zou Z, Nie P, Wen R, Xiao Y, Tang J. PLoS One; 2015 Feb 26; 10(7):e0132880. PubMed ID: 26176608 [Abstract] [Full Text] [Related]
3. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells. Le Bacquer O, Queniat G, Gmyr V, Kerr-Conte J, Lefebvre B, Pattou F. J Endocrinol; 2013 Jan 26; 216(1):21-9. PubMed ID: 23092880 [Abstract] [Full Text] [Related]
4. Receptor-recognized α₂-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells. Misra UK, Pizzo SV. PLoS One; 2012 Jan 26; 7(12):e51735. PubMed ID: 23272152 [Abstract] [Full Text] [Related]
5. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, Hegg JW, Bandhakavi S, Griffin TJ, Kim DH. J Biol Chem; 2007 Aug 31; 282(35):25604-12. PubMed ID: 17599906 [Abstract] [Full Text] [Related]
6. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth. Koo J, Wang X, Owonikoko TK, Ramalingam SS, Khuri FR, Sun SY. Oncotarget; 2015 Apr 20; 6(11):8974-87. PubMed ID: 25797247 [Abstract] [Full Text] [Related]
7. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O'Connor KL, Gao T, Evers BM. Cancer Res; 2011 May 01; 71(9):3246-56. PubMed ID: 21430067 [Abstract] [Full Text] [Related]
8. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Gordon BS, Kazi AA, Coleman CS, Dennis MD, Chau V, Jefferson LS, Kimball SR. Cell Signal; 2014 Mar 01; 26(3):461-7. PubMed ID: 24316235 [Abstract] [Full Text] [Related]
9. Aschantin targeting on the kinase domain of mammalian target of rapamycin suppresses epidermal growth factor-induced neoplastic cell transformation. Lee CJ, Jang JH, Lee JY, Lee MH, Li Y, Ryu HW, Choi KI, Dong Z, Lee HS, Oh SR, Surh YJ, Cho YY. Carcinogenesis; 2015 Oct 01; 36(10):1223-34. PubMed ID: 26243309 [Abstract] [Full Text] [Related]
10. GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition. Ito H, Ichiyanagi O, Naito S, Bilim VN, Tomita Y, Kato T, Nagaoka A, Tsuchiya N. BMC Cancer; 2016 Jul 07; 16():393. PubMed ID: 27387559 [Abstract] [Full Text] [Related]
11. Nitidine chloride suppresses epithelial-to-mesenchymal transition in osteosarcoma cell migration and invasion through Akt/GSK-3β/Snail signaling pathway. Cheng Z, Guo Y, Yang Y, Kan J, Dai S, Helian M, Li B, Xu J, Liu C. Oncol Rep; 2016 Aug 07; 36(2):1023-9. PubMed ID: 27279040 [Abstract] [Full Text] [Related]
12. Soluble epoxide hydrolase inhibition ameliorates proteinuria-induced epithelial-mesenchymal transition by regulating the PI3K-Akt-GSK-3β signaling pathway. Liang Y, Jing Z, Deng H, Li Z, Zhuang Z, Wang S, Wang Y. Biochem Biophys Res Commun; 2016 Aug 07; 463(1-2):70-5. PubMed ID: 25986738 [Abstract] [Full Text] [Related]
13. TNF-α induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, Sun KH. Mol Cancer Res; 2012 Aug 07; 10(8):1109-19. PubMed ID: 22707636 [Abstract] [Full Text] [Related]
14. Targeting of mTORC2 may have advantages over selective targeting of mTORC1 in the treatment of malignant pheochromocytoma. Zhang X, Wang X, Xu T, Zhong S, Shen Z. Tumour Biol; 2015 Jul 07; 36(7):5273-81. PubMed ID: 25666752 [Abstract] [Full Text] [Related]
15. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Jhanwar-Uniyal M, Gillick JL, Neil J, Tobias M, Thwing ZE, Murali R. Adv Biol Regul; 2015 Jan 07; 57():64-74. PubMed ID: 25442674 [Abstract] [Full Text] [Related]
16. Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Kim MR, Choi HK, Cho KB, Kim HS, Kang KW. Cancer Sci; 2009 Oct 07; 100(10):1834-41. PubMed ID: 19681904 [Abstract] [Full Text] [Related]
17. A critical role for the mTORC2 pathway in lung fibrosis. Chang W, Wei K, Ho L, Berry GJ, Jacobs SS, Chang CH, Rosen GD. PLoS One; 2014 Oct 07; 9(8):e106155. PubMed ID: 25162417 [Abstract] [Full Text] [Related]
18. mTOR regulate EMT through RhoA and Rac1 pathway in prostate cancer. Chen X, Cheng H, Pan T, Liu Y, Su Y, Ren C, Huang D, Zha X, Liang C. Mol Carcinog; 2015 Oct 07; 54(10):1086-95. PubMed ID: 25043657 [Abstract] [Full Text] [Related]
19. mTOR has a developmental stage-specific role in mitochondrial fitness independent of conventional mTORC1 and mTORC2 and the kinase activity. Kalim KW, Zhang S, Chen X, Li Y, Yang JQ, Zheng Y, Guo F. PLoS One; 2017 Oct 07; 12(8):e0183266. PubMed ID: 28813526 [Abstract] [Full Text] [Related]
20. MicroRNA-105 promotes epithelial-mesenchymal transition of nonsmall lung cancer cells through upregulating Mcl-1. Jin X, Yu Y, Zou Q, Wang M, Cui Y, Xie J, Wang Z. J Cell Biochem; 2019 Apr 07; 120(4):5880-5888. PubMed ID: 30317672 [Abstract] [Full Text] [Related] Page: [Next] [New Search]