These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
137 related items for PubMed ID: 24574383
1. Ontogeny of O2 and CO2//H+ chemosensitivity in adrenal chromaffin cells: role of innervation. Salman S, Buttigieg J, Nurse CA. J Exp Biol; 2014 Mar 01; 217(Pt 5):673-81. PubMed ID: 24574383 [Abstract] [Full Text] [Related]
2. Chronic opioids regulate KATP channel subunit Kir6.2 and carbonic anhydrase I and II expression in rat adrenal chromaffin cells via HIF-2α and protein kinase A. Salman S, Holloway AC, Nurse CA. Am J Physiol Cell Physiol; 2014 Aug 01; 307(3):C266-77. PubMed ID: 24898587 [Abstract] [Full Text] [Related]
3. Chronic exposure of neonatal rat adrenomedullary chromaffin cells to opioids in vitro blunts both hypoxia and hypercapnia chemosensitivity. Salman S, Buttigieg J, Zhang M, Nurse CA. J Physiol; 2013 Jan 15; 591(2):515-29. PubMed ID: 23148319 [Abstract] [Full Text] [Related]
9. Regulation of oxygen sensitivity in adrenal chromaffin cells. Nurse CA, Buttigieg J, Brown S, Holloway AC. Ann N Y Acad Sci; 2009 Oct 15; 1177():132-9. PubMed ID: 19845615 [Abstract] [Full Text] [Related]
11. Catecholamine secretion from rat foetal adrenal chromaffin cells and hypoxia sensitivity. Bournaud R, Hidalgo J, Yu H, Girard E, Shimahara T. Pflugers Arch; 2007 Apr 15; 454(1):83-92. PubMed ID: 17165071 [Abstract] [Full Text] [Related]
12. Functional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells. Buttigieg J, Brown ST, Lowe M, Zhang M, Nurse CA. Am J Physiol Cell Physiol; 2008 Apr 15; 294(4):C945-56. PubMed ID: 18234847 [Abstract] [Full Text] [Related]
13. Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. Thompson RJ, Jackson A, Nurse CA. J Physiol; 1997 Jan 15; 498 ( Pt 2)(Pt 2):503-10. PubMed ID: 9032697 [Abstract] [Full Text] [Related]
14. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. de Diego AM, Gandía L, García AG. Acta Physiol (Oxf); 2008 Feb 15; 192(2):287-301. PubMed ID: 18005392 [Abstract] [Full Text] [Related]
15. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus-secretion coupling. Guérineau NC. IUBMB Life; 2020 Apr 15; 72(4):553-567. PubMed ID: 31301221 [Abstract] [Full Text] [Related]
17. Divergent roles of reactive oxygen species in the responses of perinatal adrenal chromaffin cells to hypoxic challenges. Brown ST, Buttigieg J, Nurse CA. Respir Physiol Neurobiol; 2010 Dec 31; 174(3):252-8. PubMed ID: 20804866 [Abstract] [Full Text] [Related]
18. Rat adrenal chromaffin cells are neonatal CO2 sensors. Muñoz-Cabello AM, Toledo-Aral JJ, López-Barneo J, Echevarría M. J Neurosci; 2005 Jul 13; 25(28):6631-40. PubMed ID: 16014724 [Abstract] [Full Text] [Related]
19. A rotenone-sensitive site and H2O2 are key components of hypoxia-sensing in neonatal rat adrenomedullary chromaffin cells. Thompson RJ, Buttigieg J, Zhang M, Nurse CA. Neuroscience; 2007 Mar 02; 145(1):130-41. PubMed ID: 17207576 [Abstract] [Full Text] [Related]
20. Developmental change of T-type Ca2+ channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia. Levitsky KL, López-Barneo J. J Physiol; 2009 May 01; 587(Pt 9):1917-29. PubMed ID: 19273573 [Abstract] [Full Text] [Related] Page: [Next] [New Search]