These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


422 related items for PubMed ID: 24574484

  • 1. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.
    Thines BC, Youn Y, Duarte MI, Harmon FG.
    J Exp Bot; 2014 Mar; 65(4):1141-51. PubMed ID: 24574484
    [Abstract] [Full Text] [Related]

  • 2. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days.
    Fernández V, Takahashi Y, Le Gourrierec J, Coupland G.
    Plant J; 2016 Jun; 86(5):426-40. PubMed ID: 27117775
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.
    Nozue K, Harmer SL, Maloof JN.
    Plant Physiol; 2011 May; 156(1):357-72. PubMed ID: 21430186
    [Abstract] [Full Text] [Related]

  • 5. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.
    Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T.
    Plant Cell Physiol; 2011 Aug; 52(8):1315-29. PubMed ID: 21666227
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.
    Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ.
    Mol Syst Biol; 2015 Jan 19; 11(1):776. PubMed ID: 25600997
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Dynamic regulation of PIF5 by COP1-SPA complex to optimize photomorphogenesis in Arabidopsis.
    Pham VN, Kathare PK, Huq E.
    Plant J; 2018 Oct 19; 96(2):260-273. PubMed ID: 30144338
    [Abstract] [Full Text] [Related]

  • 14. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis.
    Tavridou E, Pireyre M, Ulm R.
    Plant J; 2020 Feb 19; 101(3):507-517. PubMed ID: 31571300
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis.
    Sun J, Qi L, Li Y, Zhai Q, Li C.
    Plant Cell; 2013 Jun 19; 25(6):2102-14. PubMed ID: 23757399
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. HYPERSENSITIVE TO RED AND BLUE 1 and its C-terminal regulatory function control FLOWERING LOCUS T expression.
    Kang X, Zhou Y, Sun X, Ni M.
    Plant J; 2007 Dec 19; 52(5):937-48. PubMed ID: 17916114
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.