These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


282 related items for PubMed ID: 24575951

  • 1. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple.
    Losurdo M, Yi C, Suvorova A, Rubanov S, Kim TH, Giangregorio MM, Jiao W, Bergmair I, Bruno G, Brown AS.
    ACS Nano; 2014 Mar 25; 8(3):3031-41. PubMed ID: 24575951
    [Abstract] [Full Text] [Related]

  • 2. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC.
    Yi C, Kim TH, Jiao W, Yang Y, Lazarides A, Hingerl K, Bruno G, Brown A, Losurdo M.
    Small; 2012 Sep 10; 8(17):2721-30. PubMed ID: 22674808
    [Abstract] [Full Text] [Related]

  • 3. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets.
    Sun S, Wu P.
    Phys Chem Chem Phys; 2011 Dec 21; 13(47):21116-20. PubMed ID: 22020382
    [Abstract] [Full Text] [Related]

  • 4. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles.
    Zhao Y, Yang D, Li X, Liu Y, Hu X, Zhou D, Lu Y.
    Nanoscale; 2017 Jan 19; 9(3):1087-1096. PubMed ID: 27973628
    [Abstract] [Full Text] [Related]

  • 5. Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids.
    Giangregorio MM, Jiao W, Bianco GV, Capezzuto P, Brown AS, Bruno G, Losurdo M.
    Nanoscale; 2015 Aug 14; 7(30):12868-77. PubMed ID: 26158222
    [Abstract] [Full Text] [Related]

  • 6. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light.
    Zhang H, Fan X, Quan X, Chen S, Yu H.
    Environ Sci Technol; 2011 Jul 01; 45(13):5731-6. PubMed ID: 21663048
    [Abstract] [Full Text] [Related]

  • 7. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.
    Fan W, Lee YH, Pedireddy S, Zhang Q, Liu T, Ling XY.
    Nanoscale; 2014 May 07; 6(9):4843-51. PubMed ID: 24664184
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Defective Graphene/Plasmonic Nanoparticle Hybrids for Surface-Enhanced Raman Scattering Sensors.
    Biroju RK, Marepally BC, Malik P, Dhara S, Gengan S, Maity D, Narayanan TN, Giri PK.
    ACS Omega; 2023 Jan 31; 8(4):4344-4356. PubMed ID: 36743051
    [Abstract] [Full Text] [Related]

  • 10. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y, Chen G, Du Y, Xu J, Wu S, Qu Y, Zhu Y.
    Nanoscale; 2014 Nov 21; 6(22):13754-60. PubMed ID: 25285780
    [Abstract] [Full Text] [Related]

  • 11. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam JM.
    ACS Nano; 2011 Dec 27; 5(12):9799-806. PubMed ID: 22070659
    [Abstract] [Full Text] [Related]

  • 12. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D, Petschulat J, Hübner U, Schneidewind H, Zeisberger M, Mattheis R, Pertsch T, Schmitt M, Möller R, Popp J.
    Chemphyschem; 2010 Jun 21; 11(9):1918-24. PubMed ID: 20401896
    [Abstract] [Full Text] [Related]

  • 13. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids.
    Liang X, Liang B, Pan Z, Lang X, Zhang Y, Wang G, Yin P, Guo L.
    Nanoscale; 2015 Dec 21; 7(47):20188-96. PubMed ID: 26575834
    [Abstract] [Full Text] [Related]

  • 14. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.
    Lee Y, Lee J, Lee TK, Park J, Ha M, Kwak SK, Ko H.
    ACS Appl Mater Interfaces; 2015 Dec 09; 7(48):26421-9. PubMed ID: 26575302
    [Abstract] [Full Text] [Related]

  • 15. Graphene-based hybrid films for plasmonic sensing.
    Zhao Y, Zhu Y.
    Nanoscale; 2015 Sep 21; 7(35):14561-76. PubMed ID: 26282552
    [Abstract] [Full Text] [Related]

  • 16. MoS2/graphene van der Waals heterojunctions combined with two-layered Au NP for SERS and catalysis analyse.
    Lu W, Liu L, Zhu T, Li Z, Shao M, Zhang C, Yu J, Zhao X, Yang C, Li Z.
    Opt Express; 2021 Nov 08; 29(23):38053-38067. PubMed ID: 34808865
    [Abstract] [Full Text] [Related]

  • 17. Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property.
    Kim NY, Leem YC, Hong SH, Park JH, Yim SY.
    ACS Appl Mater Interfaces; 2019 Feb 13; 11(6):6363-6373. PubMed ID: 30663309
    [Abstract] [Full Text] [Related]

  • 18. Gold-Deposited Graphene Nanosheets for Self-Cleaning Graphene Surface-Enhanced Raman Spectroscopy with Superior Charge-Transfer Contribution.
    Verma AK, Singh J, Nguyen-Tri P.
    ACS Appl Mater Interfaces; 2024 Feb 28; 16(8):10969-10983. PubMed ID: 38355426
    [Abstract] [Full Text] [Related]

  • 19. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X, Melkersson J, Wu S, Wang L, Zhang J.
    Chemphyschem; 2016 Sep 05; 17(17):2630-9. PubMed ID: 27191682
    [Abstract] [Full Text] [Related]

  • 20. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG, Cortés E, Hernández-Nieves AD, Carro P, Usaj G, Balseiro CA, Vela ME, Salvarezza RC, Fainstein A.
    ACS Nano; 2011 Jul 26; 5(7):5433-43. PubMed ID: 21675769
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.