These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 24580709

  • 1. Lipid membranes as solvents for carbon nanoparticles.
    Barnoud J, Rossi G, Monticelli L.
    Phys Rev Lett; 2014 Feb 14; 112(6):068102. PubMed ID: 24580709
    [Abstract] [Full Text] [Related]

  • 2. Formation of aggregates, icosahedral structures and percolation clusters of fullerenes in lipids bilayers: The key role of lipid saturation.
    Nisoh N, Jarerattanachat V, Karttunen M, Wong-Ekkabut J.
    Biochim Biophys Acta Biomembr; 2020 Sep 01; 1862(9):183328. PubMed ID: 32343957
    [Abstract] [Full Text] [Related]

  • 3. Distribution of Fullerene Nanoparticles between Water and Solid Supported Lipid Membranes: Thermodynamics and Effects of Membrane Composition on Distribution.
    Ha Y, Katz LE, Liljestrand HM.
    Environ Sci Technol; 2015 Dec 15; 49(24):14546-53. PubMed ID: 26569041
    [Abstract] [Full Text] [Related]

  • 4. Effect of self-assembly of fullerene nano-particles on lipid membrane.
    Zhang S, Mu Y, Zhang JZ, Xu W.
    PLoS One; 2013 Dec 15; 8(10):e77436. PubMed ID: 24204827
    [Abstract] [Full Text] [Related]

  • 5. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study.
    Sastre J, Mannelli I, Reigada R.
    Biochim Biophys Acta Gen Subj; 2017 Nov 15; 1861(11 Pt A):2872-2882. PubMed ID: 28780125
    [Abstract] [Full Text] [Related]

  • 6. Effect of C60 on solid supported lipid bilayers.
    Spurlin TA, Gewirth AA.
    Nano Lett; 2007 Feb 15; 7(2):531-5. PubMed ID: 17298021
    [Abstract] [Full Text] [Related]

  • 7. Computer simulation study of fullerene translocation through lipid membranes.
    Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L.
    Nat Nanotechnol; 2008 Jun 15; 3(6):363-8. PubMed ID: 18654548
    [Abstract] [Full Text] [Related]

  • 8. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers.
    Ali MR, Cheng KH, Huang J.
    Proc Natl Acad Sci U S A; 2007 Mar 27; 104(13):5372-7. PubMed ID: 17372226
    [Abstract] [Full Text] [Related]

  • 9. Embedded single-walled carbon nanotubes locally perturb DOPC phospholipid bilayers.
    Parthasarathi R, Tummala NR, Striolo A.
    J Phys Chem B; 2012 Oct 25; 116(42):12769-82. PubMed ID: 23025795
    [Abstract] [Full Text] [Related]

  • 10. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics.
    Santos SM, Dinis AM, Peixoto F, Ferreira L, Jurado AS, Videira RA.
    Toxicol Sci; 2014 Mar 25; 138(1):117-29. PubMed ID: 24361870
    [Abstract] [Full Text] [Related]

  • 11. Interaction of C60 fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study.
    Cherniavskyi YK, Ramseyer C, Yesylevskyy SO.
    Phys Chem Chem Phys; 2016 Jan 07; 18(1):278-84. PubMed ID: 26608905
    [Abstract] [Full Text] [Related]

  • 12. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins.
    Van Lehn RC, Alexander-Katz A.
    J Phys Chem B; 2014 Nov 06; 118(44):12586-98. PubMed ID: 25347475
    [Abstract] [Full Text] [Related]

  • 13. Photodynamic Activity of Fullerenes and Other Molecules Incorporated into Lipid Membranes by Exchange.
    Ikeda A.
    Chem Rec; 2016 Feb 06; 16(1):249-60. PubMed ID: 26663769
    [Abstract] [Full Text] [Related]

  • 14. Dioxygen transmembrane distributions and partitioning thermodynamics in lipid bilayers and micelles.
    Al-Abdul-Wahid MS, Evanics F, Prosser RS.
    Biochemistry; 2011 May 17; 50(19):3975-83. PubMed ID: 21510612
    [Abstract] [Full Text] [Related]

  • 15. Carbon nanotubes as templates for polymerized lipid assemblies.
    Thauvin C, Rickling S, Schultz P, Célia H, Meunier S, Mioskowski C.
    Nat Nanotechnol; 2008 Dec 17; 3(12):743-8. PubMed ID: 19057595
    [Abstract] [Full Text] [Related]

  • 16. The distribution and conformation of very long-chain plant wax components in a lipid bilayer.
    Coll EP, Kandt C, Bird DA, Samuels AL, Tieleman DP.
    J Phys Chem B; 2007 Aug 02; 111(30):8702-4. PubMed ID: 17608528
    [Abstract] [Full Text] [Related]

  • 17. The effect of temperature on lipid-n-alkane interactions in lipid bilayers.
    Coster HG, Laver DR.
    Biochim Biophys Acta; 1986 May 09; 857(1):95-104. PubMed ID: 3964707
    [Abstract] [Full Text] [Related]

  • 18. A molecular dynamics simulation study of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer.
    Li L, Davande H, Bedrov D, Smith GD.
    J Phys Chem B; 2007 Apr 26; 111(16):4067-72. PubMed ID: 17402771
    [Abstract] [Full Text] [Related]

  • 19. Transport methods for probing the barrier domain of lipid bilayer membranes.
    Xiang TX, Chen X, Anderson BD.
    Biophys J; 1992 Jul 26; 63(1):78-88. PubMed ID: 1420875
    [Abstract] [Full Text] [Related]

  • 20. Energetics of water permeation through fullerene membrane.
    Isobe H, Homma T, Nakamura E.
    Proc Natl Acad Sci U S A; 2007 Sep 18; 104(38):14895-8. PubMed ID: 17846427
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.