These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 24582240

  • 1. Synthesis and characterization of xanthan-hydroxyapatite nanocomposites for cellular uptake.
    Bueno VB, Bentini R, Catalani LH, Barbosa LR, Petri DF.
    Mater Sci Eng C Mater Biol Appl; 2014 Apr 01; 37():195-203. PubMed ID: 24582240
    [Abstract] [Full Text] [Related]

  • 2. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
    Cai L, Guinn AS, Wang S.
    Acta Biomater; 2011 May 01; 7(5):2185-99. PubMed ID: 21284960
    [Abstract] [Full Text] [Related]

  • 3. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.
    Paşcu EI, Stokes J, McGuinness GB.
    Mater Sci Eng C Mater Biol Appl; 2013 Dec 01; 33(8):4905-16. PubMed ID: 24094204
    [Abstract] [Full Text] [Related]

  • 4. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation.
    Hou R, Zhang G, Du G, Zhan D, Cong Y, Cheng Y, Fu J.
    Colloids Surf B Biointerfaces; 2013 Mar 01; 103():318-25. PubMed ID: 23261554
    [Abstract] [Full Text] [Related]

  • 5. Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering.
    Patel M, Patel KJ, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP.
    J Biomed Mater Res A; 2010 Aug 01; 94(2):408-18. PubMed ID: 20186741
    [Abstract] [Full Text] [Related]

  • 6. SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites.
    Arkharova NA, Suvorova EI, Severin AV, Khripunov AK, Krasheninnikov SV, Klechkovskaya VV.
    Scanning; 2016 Nov 01; 38(6):757-765. PubMed ID: 27171920
    [Abstract] [Full Text] [Related]

  • 7. Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells.
    Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A.
    Biomaterials; 2008 Mar 01; 29(7):790-6. PubMed ID: 18022226
    [Abstract] [Full Text] [Related]

  • 8. The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro.
    Boanini E, Torricelli P, Gazzano M, Fini M, Bigi A.
    Biomaterials; 2012 Jan 01; 33(2):722-30. PubMed ID: 22014461
    [Abstract] [Full Text] [Related]

  • 9. Biocompatible xanthan/polypyrrole scaffolds for tissue engineering.
    Bueno VB, Takahashi SH, Catalani LH, de Torresi SI, Petri DF.
    Mater Sci Eng C Mater Biol Appl; 2015 Jan 01; 52():121-8. PubMed ID: 25953548
    [Abstract] [Full Text] [Related]

  • 10. Osteoblast adhesion, proliferation and growth on polyelectrolyte complex-hydroxyapatite nanocomposites.
    Verma D, Katti KS, Katti DR.
    Philos Trans A Math Phys Eng Sci; 2010 Apr 28; 368(1917):2083-97. PubMed ID: 20308116
    [Abstract] [Full Text] [Related]

  • 11. Photocrosslinkable and elastomeric hydrogels for bone regeneration.
    Thakur T, Xavier JR, Cross L, Jaiswal MK, Mondragon E, Kaunas R, Gaharwar AK.
    J Biomed Mater Res A; 2016 Apr 28; 104(4):879-88. PubMed ID: 26650507
    [Abstract] [Full Text] [Related]

  • 12. In vitro evaluation of nanosized carbonate-substituted hydroxyapatite and its polyhydroxyethylmethacrylate nanocomposite.
    Huang J, Best SM, Brooks RA, Rushton N, Bonfield W.
    J Biomed Mater Res A; 2008 Dec 01; 87(3):598-607. PubMed ID: 18186069
    [Abstract] [Full Text] [Related]

  • 13. Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique.
    Wan Y, Wu C, Xiong G, Zuo G, Jin J, Ren K, Zhu Y, Wang Z, Luo H.
    J Mech Behav Biomed Mater; 2015 Jul 01; 47():29-37. PubMed ID: 25837342
    [Abstract] [Full Text] [Related]

  • 14. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium-doped hydroxyapatite as promising biomaterials.
    Grazioli G, Silva AF, Souza JF, David C, Diehl L, Sousa-Neto MD, Cava SS, Fajardo AR, Moraes RR.
    J Biomed Mater Res A; 2021 Jul 01; 109(7):1160-1172. PubMed ID: 32985092
    [Abstract] [Full Text] [Related]

  • 15. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT.
    Biomaterials; 2008 Nov 01; 29(32):4314-22. PubMed ID: 18715637
    [Abstract] [Full Text] [Related]

  • 16. Xanthan hydrogel films: molecular conformation, charge density and protein carriers.
    Bueno VB, Petri DF.
    Carbohydr Polym; 2014 Jan 30; 101():897-904. PubMed ID: 24299854
    [Abstract] [Full Text] [Related]

  • 17. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.
    Kim HW, Kim HE, Salih V.
    Biomaterials; 2005 Sep 30; 26(25):5221-30. PubMed ID: 15792549
    [Abstract] [Full Text] [Related]

  • 18. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique.
    Poursamar SA, Azami M, Mozafari M.
    Colloids Surf B Biointerfaces; 2011 Jun 01; 84(2):310-6. PubMed ID: 21310596
    [Abstract] [Full Text] [Related]

  • 19. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles.
    Glaser T, Bueno VB, Cornejo DR, Petri DF, Ulrich H.
    Biomed Mater; 2015 Jul 08; 10(4):045002. PubMed ID: 26154495
    [Abstract] [Full Text] [Related]

  • 20. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L, Rodriguez J, Raez J, Myles AJ, Fenniri H, Webster TJ.
    Nanotechnology; 2009 Apr 29; 20(17):175101. PubMed ID: 19420581
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.