These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural basis for the role of Asp-120 in metallo-beta-lactamases. Crisp J, Conners R, Garrity JD, Carenbauer AL, Crowder MW, Spencer J. Biochemistry; 2007 Sep 18; 46(37):10664-74. PubMed ID: 17715946 [Abstract] [Full Text] [Related]
3. Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases. Murphy TA, Catto LE, Halford SE, Hadfield AT, Minor W, Walsh TR, Spencer J. J Mol Biol; 2006 Mar 31; 357(3):890-903. PubMed ID: 16460758 [Abstract] [Full Text] [Related]
4. New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism. Zheng M, Xu D. J Phys Chem B; 2013 Oct 03; 117(39):11596-607. PubMed ID: 24025144 [Abstract] [Full Text] [Related]
5. Role of Non-Active-Site Residue Trp-93 in the Function and Stability of New Delhi Metallo-β-Lactamase 1. Khan AU, Rehman MT. Antimicrob Agents Chemother; 2016 Jan 03; 60(1):356-60. PubMed ID: 26525789 [Abstract] [Full Text] [Related]
6. Characterization of purified New Delhi metallo-β-lactamase-1. Thomas PW, Zheng M, Wu S, Guo H, Liu D, Xu D, Fast W. Biochemistry; 2011 Nov 22; 50(46):10102-13. PubMed ID: 22029287 [Abstract] [Full Text] [Related]
7. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold. González JM, Medrano Martín FJ, Costello AL, Tierney DL, Vila AJ. J Mol Biol; 2007 Nov 09; 373(5):1141-56. PubMed ID: 17915249 [Abstract] [Full Text] [Related]
8. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM, Rasia RM, Vila AJ, Sutton BJ, Fabiane SM. Biochemistry; 2005 Mar 29; 44(12):4841-9. PubMed ID: 15779910 [Abstract] [Full Text] [Related]
9. A Noncanonical Metal Center Drives the Activity of the Sediminispirochaeta smaragdinae Metallo-β-lactamase SPS-1. Cheng Z, VanPelt J, Bergstrom A, Bethel C, Katko A, Miller C, Mason K, Cumming E, Zhang H, Kimble RL, Fullington S, Bretz SL, Nix JC, Bonomo RA, Tierney DL, Page RC, Crowder MW. Biochemistry; 2018 Sep 04; 57(35):5218-5229. PubMed ID: 30106565 [Abstract] [Full Text] [Related]
10. Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity. Llarrull LI, Fabiane SM, Kowalski JM, Bennett B, Sutton BJ, Vila AJ. J Biol Chem; 2007 Jun 22; 282(25):18276-18285. PubMed ID: 17426028 [Abstract] [Full Text] [Related]
11. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J. J Mol Biol; 1998 Nov 20; 284(1):125-36. PubMed ID: 9811546 [Abstract] [Full Text] [Related]
12. Metal content and localization during turnover in B. cereus metallo-beta-lactamase. Llarrull LI, Tioni MF, Vila AJ. J Am Chem Soc; 2008 Nov 26; 130(47):15842-51. PubMed ID: 18980306 [Abstract] [Full Text] [Related]
13. Structure-based computational study of the hydrolysis of New Delhi metallo-β-lactmase-1. Zhu K, Lu J, Ye F, Jin L, Kong X, Liang Z, Chen Y, Yu K, Jiang H, Li JQ, Luo C. Biochem Biophys Res Commun; 2013 Feb 01; 431(1):2-7. PubMed ID: 23313491 [Abstract] [Full Text] [Related]
14. The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site. Morán-Barrio J, González JM, Lisa MN, Costello AL, Peraro MD, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ. J Biol Chem; 2007 Jun 22; 282(25):18286-18293. PubMed ID: 17403673 [Abstract] [Full Text] [Related]
15. Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-β-lactamase active site. Horton LB, Shanker S, Mikulski R, Brown NG, Phillips KJ, Lykissa E, Venkataram Prasad BV, Palzkill T. Antimicrob Agents Chemother; 2012 Nov 22; 56(11):5667-77. PubMed ID: 22908171 [Abstract] [Full Text] [Related]
16. Probing the effect of the non-active-site mutation Y229W in New Delhi metallo-β-lactamase-1 by site-directed mutagenesis, kinetic studies, and molecular dynamics simulations. Chen J, Chen H, Shi Y, Hu F, Lao X, Gao X, Zheng H, Yao W. PLoS One; 2013 Nov 22; 8(12):e82080. PubMed ID: 24339993 [Abstract] [Full Text] [Related]
17. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. Li Z, Rasmussen BA, Herzberg O. Protein Sci; 1999 Jan 22; 8(1):249-52. PubMed ID: 10210203 [Abstract] [Full Text] [Related]
18. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ. Biochemistry; 1998 Sep 08; 37(36):12404-11. PubMed ID: 9730812 [Abstract] [Full Text] [Related]
19. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. Zhang H, Hao Q. FASEB J; 2011 Aug 08; 25(8):2574-82. PubMed ID: 21507902 [Abstract] [Full Text] [Related]
20. Mechanistic and spectroscopic studies of metallo-β-lactamase NDM-1. Yang H, Aitha M, Hetrick AM, Richmond TK, Tierney DL, Crowder MW. Biochemistry; 2012 May 08; 51(18):3839-47. PubMed ID: 22482529 [Abstract] [Full Text] [Related] Page: [Next] [New Search]