These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


268 related items for PubMed ID: 24586559

  • 1. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise.
    Jubeau M, Rupp T, Perrey S, Temesi J, Wuyam B, Levy P, Verges S, Millet GY.
    PLoS One; 2014; 9(2):e89157. PubMed ID: 24586559
    [Abstract] [Full Text] [Related]

  • 2. Neuromuscular Fatigue during Prolonged Exercise in Hypoxia.
    Jubeau M, Rupp T, Temesi J, Perrey S, Wuyam B, Millet GY, Verges S.
    Med Sci Sports Exerc; 2017 Mar; 49(3):430-439. PubMed ID: 27753741
    [Abstract] [Full Text] [Related]

  • 3. Fatigue diminishes motoneuronal excitability during cycling exercise.
    Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M.
    J Neurophysiol; 2016 Oct 01; 116(4):1743-1751. PubMed ID: 27440242
    [Abstract] [Full Text] [Related]

  • 4. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.
    Kalmar JM, Cafarelli E.
    J Appl Physiol (1985); 2006 Jun 01; 100(6):1757-64. PubMed ID: 16424071
    [Abstract] [Full Text] [Related]

  • 5. Dynamics of corticospinal changes during and after high-intensity quadriceps exercise.
    Gruet M, Temesi J, Rupp T, Levy P, Verges S, Millet GY.
    Exp Physiol; 2014 Aug 01; 99(8):1053-64. PubMed ID: 24907029
    [Abstract] [Full Text] [Related]

  • 6. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.
    Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M.
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun 15; 308(12):R998-1007. PubMed ID: 25876651
    [Abstract] [Full Text] [Related]

  • 7. High-intensity exhaustive exercise reduces long-interval intracortical inhibition.
    O'Leary TJ, Collett J, Morris MG.
    Exp Brain Res; 2018 Dec 15; 236(12):3149-3158. PubMed ID: 30159591
    [Abstract] [Full Text] [Related]

  • 8. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL.
    Exp Physiol; 2016 Dec 01; 101(12):1552-1564. PubMed ID: 27652591
    [Abstract] [Full Text] [Related]

  • 9. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation.
    Aboodarda SJ, Mira J, Floreani M, Jaswal R, Moon SJ, Amery K, Rupp T, Millet GY.
    Eur J Appl Physiol; 2018 Nov 01; 118(11):2295-2305. PubMed ID: 30128852
    [Abstract] [Full Text] [Related]

  • 10. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running.
    Temesi J, Rupp T, Martin V, Arnal PJ, Féasson L, Verges S, Millet GY.
    Med Sci Sports Exerc; 2014 Jun 01; 46(6):1166-75. PubMed ID: 24195865
    [Abstract] [Full Text] [Related]

  • 11. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S.
    Neuroscience; 2016 Feb 09; 314():125-33. PubMed ID: 26642805
    [Abstract] [Full Text] [Related]

  • 12. Heavy-resistance exercise-induced increases in jump performance are not explained by changes in neuromuscular function.
    Thomas K, Toward A, West DJ, Howatson G, Goodall S.
    Scand J Med Sci Sports; 2017 Jan 09; 27(1):35-44. PubMed ID: 26639349
    [Abstract] [Full Text] [Related]

  • 13. Effect of hypohydration on peripheral and corticospinal excitability and voluntary activation.
    Bowtell JL, Avenell G, Hunter SP, Mileva KN.
    PLoS One; 2013 Jan 09; 8(10):e77004. PubMed ID: 24098574
    [Abstract] [Full Text] [Related]

  • 14. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise.
    Sidhu SK, Weavil JC, Mangum TS, Jessop JE, Richardson RS, Morgan DE, Amann M.
    Clin Neurophysiol; 2017 Jan 09; 128(1):44-55. PubMed ID: 27866119
    [Abstract] [Full Text] [Related]

  • 15. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans.
    Hilty L, Lutz K, Maurer K, Rodenkirch T, Spengler CM, Boutellier U, Jäncke L, Amann M.
    Exp Physiol; 2011 May 09; 96(5):505-17. PubMed ID: 21317218
    [Abstract] [Full Text] [Related]

  • 16. Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men.
    Temesi J, Vernillo G, Martin M, Krüger RL, McNeil CJ, Millet GY.
    Neuroscience; 2019 Dec 01; 422():88-98. PubMed ID: 31682821
    [Abstract] [Full Text] [Related]

  • 17. Corticospinal changes induced by fatiguing eccentric versus concentric exercise.
    Garnier YM, Paizis C, Lepers R.
    Eur J Sport Sci; 2019 Mar 01; 19(2):166-176. PubMed ID: 30016203
    [Abstract] [Full Text] [Related]

  • 18. Short-interval intracortical inhibition in knee extensors during locomotor cycling.
    Sidhu SK, Cresswell AG, Carroll TJ.
    Acta Physiol (Oxf); 2013 Jan 01; 207(1):194-201. PubMed ID: 23025802
    [Abstract] [Full Text] [Related]

  • 19. Reliability of transcranial magnetic stimulation-evoked responses on knee extensor muscles during cycling.
    Zhang J, McClean ZJ, Khaledi N, Morgan SJ, Millet GY, Aboodarda SJ.
    Exp Brain Res; 2024 Jul 01; 242(7):1681-1695. PubMed ID: 38806709
    [Abstract] [Full Text] [Related]

  • 20. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris.
    Temesi J, Gruet M, Rupp T, Verges S, Millet GY.
    J Neuroeng Rehabil; 2014 Mar 21; 11():40. PubMed ID: 24655366
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.