These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 24592855

  • 1. Two-photon graphene oxide/aptamer nanosensing conjugate for in vitro or in vivo molecular probing.
    Yi M, Yang S, Peng Z, Liu C, Li J, Zhong W, Yang R, Tan W.
    Anal Chem; 2014 Apr 01; 86(7):3548-54. PubMed ID: 24592855
    [Abstract] [Full Text] [Related]

  • 2. Poly β-cyclodextrin/TPdye nanomicelle-based two-photon nanoprobe for caspase-3 activation imaging in live cells and tissues.
    Yan H, He L, Zhao W, Li J, Xiao Y, Yang R, Tan W.
    Anal Chem; 2014 Nov 18; 86(22):11440-50. PubMed ID: 25347212
    [Abstract] [Full Text] [Related]

  • 3. Two-photon AgNP/DNA-TP dye nanosensing conjugate for biothiol probing in live cells.
    Liu M, Tang Q, Deng T, Yan H, Li J, Li Y, Yang R.
    Analyst; 2014 Dec 07; 139(23):6185-91. PubMed ID: 25285333
    [Abstract] [Full Text] [Related]

  • 4. A fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF).
    Wang SE, Si S.
    Appl Spectrosc; 2013 Nov 07; 67(11):1270-4. PubMed ID: 24160878
    [Abstract] [Full Text] [Related]

  • 5. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.
    Adjili S, Favier A, Fargier G, Thomas A, Massin J, Monier K, Favard C, Vanbelle C, Bruneau S, Peyriéras N, Andraud C, Muriaux D, Charreyre MT.
    Biomaterials; 2015 Apr 07; 46():70-81. PubMed ID: 25678117
    [Abstract] [Full Text] [Related]

  • 6. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate.
    Xing XJ, Liu XG, Yue-He, Luo QY, Tang HW, Pang DW.
    Biosens Bioelectron; 2012 Apr 07; 37(1):61-7. PubMed ID: 22613226
    [Abstract] [Full Text] [Related]

  • 7. A general strategy to create RNA aptamer sensors using "regulated" graphene oxide adsorption.
    Song J, Lau PS, Liu M, Shuang S, Dong C, Li Y.
    ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21806-12. PubMed ID: 24992732
    [Abstract] [Full Text] [Related]

  • 8. Two-Photon Sensing and Imaging of Endogenous Biological Cyanide in Plant Tissues Using Graphene Quantum Dot/Gold Nanoparticle Conjugate.
    Wang L, Zheng J, Yang S, Wu C, Liu C, Xiao Y, Li Y, Qing Z, Yang R.
    ACS Appl Mater Interfaces; 2015 Sep 02; 7(34):19509-15. PubMed ID: 26264405
    [Abstract] [Full Text] [Related]

  • 9. In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets.
    Wang Y, Li Z, Weber TJ, Hu D, Lin CT, Li J, Lin Y.
    Anal Chem; 2013 Jul 16; 85(14):6775-82. PubMed ID: 23758346
    [Abstract] [Full Text] [Related]

  • 10. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine.
    Chen JL, Yan XP, Meng K, Wang SF.
    Anal Chem; 2011 Nov 15; 83(22):8787-93. PubMed ID: 21978023
    [Abstract] [Full Text] [Related]

  • 11. Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement.
    Liu Z, Chen S, Liu B, Wu J, Zhou Y, He L, Ding J, Liu J.
    Anal Chem; 2014 Dec 16; 86(24):12229-35. PubMed ID: 25393607
    [Abstract] [Full Text] [Related]

  • 12. Intracellular imaging with a graphene-based fluorescent probe.
    Peng C, Hu W, Zhou Y, Fan C, Huang Q.
    Small; 2010 Aug 02; 6(15):1686-92. PubMed ID: 20602429
    [Abstract] [Full Text] [Related]

  • 13. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals.
    Wang Y, Chen JT, Yan XP.
    Anal Chem; 2013 Feb 19; 85(4):2529-35. PubMed ID: 23330548
    [Abstract] [Full Text] [Related]

  • 14. Fluorescent sensors using DNA-functionalized graphene oxide.
    Liu Z, Liu B, Ding J, Liu J.
    Anal Bioanal Chem; 2014 Nov 19; 406(27):6885-902. PubMed ID: 24986027
    [Abstract] [Full Text] [Related]

  • 15. Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues.
    Kim HM, Cho BR.
    Acc Chem Res; 2009 Jul 21; 42(7):863-72. PubMed ID: 19334716
    [Abstract] [Full Text] [Related]

  • 16. An ultra-high sensitive platform for fluorescence detection of micrococcal nuclease based on graphene oxide.
    He Y, Xiong LH, Xing XJ, Tang HW, Pang DW.
    Biosens Bioelectron; 2013 Apr 15; 42():467-73. PubMed ID: 23238320
    [Abstract] [Full Text] [Related]

  • 17. A novel graphene oxide based fluorescent nanosensing strategy with hybridization chain reaction signal amplification for highly sensitive biothiol detection.
    Ge J, Huang ZM, Xi Q, Yu RQ, Jiang JH, Chu X.
    Chem Commun (Camb); 2014 Oct 14; 50(80):11879-82. PubMed ID: 25155659
    [Abstract] [Full Text] [Related]

  • 18. A general fluorescent sensor design strategy for "turn-on" activity detection of exonucleases and restriction endonucleases based on graphene oxide.
    Zhang Q, Kong DM.
    Analyst; 2013 Nov 07; 138(21):6437-44. PubMed ID: 24013214
    [Abstract] [Full Text] [Related]

  • 19. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO.
    Sun X, Liu B, Yang C, Li C.
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():288-93. PubMed ID: 24835931
    [Abstract] [Full Text] [Related]

  • 20. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs.
    Liu X, Wang F, Aizen R, Yehezkeli O, Willner I.
    J Am Chem Soc; 2013 Aug 14; 135(32):11832-9. PubMed ID: 23841845
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.