These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
455 related items for PubMed ID: 24597637
1. Does acoustic fundamental frequency information enhance cochlear implant performance? Mulhern L, Cullington H. Cochlear Implants Int; 2014 Mar; 15(2):101-8. PubMed ID: 24597637 [Abstract] [Full Text] [Related]
2. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects. Auinger AB, Riss D, Liepins R, Rader T, Keck T, Keintzel T, Kaider A, Baumgartner WD, Gstoettner W, Arnoldner C. Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538 [Abstract] [Full Text] [Related]
3. Fundamental frequency information for speech recognition via bimodal stimulation: cochlear implant in one ear and hearing aid in the other. Shpak T, Most T, Luntz M. Ear Hear; 2014 Jul; 35(1):97-109. PubMed ID: 24141594 [Abstract] [Full Text] [Related]
4. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Rader T, Fastl H, Baumann U. Ear Hear; 2013 Jul; 34(3):324-32. PubMed ID: 23263408 [Abstract] [Full Text] [Related]
5. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing. Williges B, Dietz M, Hohmann V, Jürgens T. Trends Hear; 2015 Dec 30; 19():. PubMed ID: 26721918 [Abstract] [Full Text] [Related]
6. Shifting Fundamental Frequency in Simulated Electric-Acoustic Listening: Effects of F0 Variation. Brown CA, Helms Tillery K, Apoux F, Doyle NM, Bacon SP. Ear Hear; 2016 Dec 30; 37(1):e18-25. PubMed ID: 26565786 [Abstract] [Full Text] [Related]
7. Factors Affecting Bimodal Benefit in Pediatric Mandarin-Speaking Chinese Cochlear Implant Users. Liu YW, Tao DD, Chen B, Cheng X, Shu Y, Galvin JJ, Fu QJ. Ear Hear; 2019 Dec 30; 40(6):1316-1327. PubMed ID: 30882534 [Abstract] [Full Text] [Related]
8. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients. Dincer D'Alessandro H, Ballantyne D, Boyle PJ, De Seta E, DeVincentiis M, Mancini P. Ear Hear; 2018 Dec 30; 39(4):679-686. PubMed ID: 29194080 [Abstract] [Full Text] [Related]
9. [Simulation of speech perception with cochlear implants : Influence of frequency and level of fundamental frequency components with electronic acoustic stimulation]. Rader T, Fastl H, Baumann U. HNO; 2017 Mar 30; 65(3):237-242. PubMed ID: 27670421 [Abstract] [Full Text] [Related]
10. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L, Hohmann V, Büchner A, Schädler MR, Jürgens T. Hear Res; 2017 Feb 30; 344():50-61. PubMed ID: 27838372 [Abstract] [Full Text] [Related]
11. Speech Segregation in Active Middle Ear Stimulation: Masking Release With Changing Fundamental Frequency. Auinger AB, Liepins R, Kaider A, Vyskocil E, Riss D, Arnoldner C. Ear Hear; 2021 Feb 30; 42(3):709-717. PubMed ID: 33369941 [Abstract] [Full Text] [Related]
12. The benefits of remote microphone technology for adults with cochlear implants. Fitzpatrick EM, Séguin C, Schramm DR, Armstrong S, Chénier J. Ear Hear; 2009 Oct 30; 30(5):590-9. PubMed ID: 19561509 [Abstract] [Full Text] [Related]
13. Beneficial acoustic speech cues for cochlear implant users with residual acoustic hearing. Visram AS, Azadpour M, Kluk K, McKay CM. J Acoust Soc Am; 2012 May 30; 131(5):4042-50. PubMed ID: 22559377 [Abstract] [Full Text] [Related]
14. Speech prosody perception in cochlear implant users with and without residual hearing. Marx M, James C, Foxton J, Capber A, Fraysse B, Barone P, Deguine O. Ear Hear; 2015 May 30; 36(2):239-48. PubMed ID: 25303861 [Abstract] [Full Text] [Related]
15. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing. Carroll J, Tiaden S, Zeng FG. J Acoust Soc Am; 2011 Oct 30; 130(4):2054-62. PubMed ID: 21973360 [Abstract] [Full Text] [Related]
16. Trimodal speech perception: how residual acoustic hearing supplements cochlear-implant consonant recognition in the presence of visual cues. Sheffield BM, Schuchman G, Bernstein JG. Ear Hear; 2015 Oct 30; 36(3):e99-112. PubMed ID: 25514796 [Abstract] [Full Text] [Related]
17. The use of frequency compression by cochlear implant recipients with postoperative acoustic hearing. McDermott H, Henshall K. J Am Acad Audiol; 2010 Jun 30; 21(6):380-9. PubMed ID: 20701835 [Abstract] [Full Text] [Related]
18. Bimodal hearing and speech perception with a competing talker. Pyschny V, Landwehr M, Hahn M, Walger M, von Wedel H, Meister H. J Speech Lang Hear Res; 2011 Oct 30; 54(5):1400-15. PubMed ID: 21498577 [Abstract] [Full Text] [Related]
19. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners. Dieudonné B, Francart T. Hear Res; 2018 Jun 30; 363():78-84. PubMed ID: 29555110 [Abstract] [Full Text] [Related]
20. Top-Down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech. Oh SH, Donaldson GS, Kong YY. Ear Hear; 2016 Jun 30; 37(5):582-92. PubMed ID: 27007220 [Abstract] [Full Text] [Related] Page: [Next] [New Search]