These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 24606905
1. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Lamy CM, Sanno H, Labouèbe G, Picard A, Magnan C, Chatton JY, Thorens B. Cell Metab; 2014 Mar 04; 19(3):527-38. PubMed ID: 24606905 [Abstract] [Full Text] [Related]
2. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. Marty N, Dallaporta M, Foretz M, Emery M, Tarussio D, Bady I, Binnert C, Beermann F, Thorens B. J Clin Invest; 2005 Dec 04; 115(12):3545-53. PubMed ID: 16322792 [Abstract] [Full Text] [Related]
3. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. Boychuk CR, Gyarmati P, Xu H, Smith BN. J Neurophysiol; 2015 Aug 04; 114(2):999-1007. PubMed ID: 26084907 [Abstract] [Full Text] [Related]
4. Desperately seeking sugar: glial cells as hypoglycemia sensors. Klip A, Hawkins M. J Clin Invest; 2005 Dec 04; 115(12):3403-5. PubMed ID: 16322788 [Abstract] [Full Text] [Related]
5. Neural regulation of pancreatic islet cell mass and function. Thorens B. Diabetes Obes Metab; 2014 Sep 04; 16 Suppl 1():87-95. PubMed ID: 25200301 [Abstract] [Full Text] [Related]
6. Glucose transporter-2 regulation of VMN GABA neuron metabolic sensor and transmitter gene expression. Roy SC, Sapkota S, Pasula MB, Katakam S, Shrestha R, Briski KP. Sci Rep; 2024 Jun 20; 14(1):14220. PubMed ID: 38902332 [Abstract] [Full Text] [Related]
7. A voltage-dependent depolarization induced by low external glucose in neurons of the nucleus of the tractus solitarius: interaction with KATP channels. De Bernardis Murat C, Leão RM. J Physiol; 2019 May 20; 597(9):2515-2532. PubMed ID: 30927460 [Abstract] [Full Text] [Related]
8. GLUT2, glucose sensing and glucose homeostasis. Thorens B. Diabetologia; 2015 Feb 20; 58(2):221-32. PubMed ID: 25421524 [Abstract] [Full Text] [Related]
9. Systemic Glucose Regulation by a Hindbrain Inhibitory Circuit in a Mouse Model of Type 1 Diabetes. Juras JA, Pitra S, Smith BN. Neuroendocrinology; 2024 Feb 20; 114(3):302-312. PubMed ID: 38194945 [Abstract] [Full Text] [Related]
10. Molecular and functional changes in glucokinase expression in the brainstem dorsal vagal complex in a murine model of type 1 diabetes. Halmos KC, Gyarmati P, Xu H, Maimaiti S, Jancsó G, Benedek G, Smith BN. Neuroscience; 2015 Oct 15; 306():115-22. PubMed ID: 26297899 [Abstract] [Full Text] [Related]
11. A hindbrain inhibitory microcircuit mediates vagally-coordinated glucose regulation. Boychuk CR, Smith KC, Peterson LE, Boychuk JA, Butler CR, Derera ID, McCarthy JJ, Smith BN. Sci Rep; 2019 Feb 25; 9(1):2722. PubMed ID: 30804396 [Abstract] [Full Text] [Related]
12. Glucose transporter 2 mediates the hypoglycemia-induced increase in cerebral blood flow. Lei H, Preitner F, Labouèbe G, Gruetter R, Thorens B. J Cereb Blood Flow Metab; 2019 Sep 25; 39(9):1725-1736. PubMed ID: 29561214 [Abstract] [Full Text] [Related]
13. Membrane and synaptic properties of nucleus tractus solitarius neurons projecting to the caudal ventrolateral medulla. Li DP, Yang Q. Auton Neurosci; 2007 Oct 30; 136(1-2):69-81. PubMed ID: 17537680 [Abstract] [Full Text] [Related]
14. Role of dorsal vagal motor nucleus orexin-receptor-1 in glycemic responses to acute versus repeated insulin administration. Paranjape S, Vavaiya K, Kale A, Briski K. Neuropeptides; 2007 Apr 30; 41(2):111-6. PubMed ID: 17276508 [Abstract] [Full Text] [Related]
15. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Thorens B. Diabetes Obes Metab; 2011 Oct 30; 13 Suppl 1():82-8. PubMed ID: 21824260 [Abstract] [Full Text] [Related]
16. Orexin-A depolarizes nucleus tractus solitarius neurons through effects on nonselective cationic and K+ conductances. Yang B, Ferguson AV. J Neurophysiol; 2003 Apr 30; 89(4):2167-75. PubMed ID: 12611968 [Abstract] [Full Text] [Related]
17. Mice with nucleus tractus solitarius injury induced by chronic restraint stress present impaired ability to raise blood glucose and glucagon levels when blood glucose levels plummet. Bi W, Zheng X, Wang S, Zhou X. Endocr J; 2020 Jul 28; 67(7):771-783. PubMed ID: 32249244 [Abstract] [Full Text] [Related]
18. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers. Wan S, Browning KN. Am J Physiol Gastrointest Liver Physiol; 2008 Mar 28; 294(3):G757-63. PubMed ID: 18202107 [Abstract] [Full Text] [Related]
19. Recurrent insulin-induced hypoglycemia causes site-specific patterns of habituation or amplification of CNS neuronal genomic activation. Paranjape SA, Briski KP. Neuroscience; 2005 Mar 28; 130(4):957-70. PubMed ID: 15652993 [Abstract] [Full Text] [Related]
20. A gene knockout approach in mice to identify glucose sensors controlling glucose homeostasis. Thorens B. Pflugers Arch; 2003 Jan 28; 445(4):482-90. PubMed ID: 12548393 [Abstract] [Full Text] [Related] Page: [Next] [New Search]