These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
455 related items for PubMed ID: 24612444
1. Pathological vitreous causes cell line-derived (but not donor-derived) retinal pigment epithelial cells to display proliferative vitreoretinopathy-like features in culture. Sharma M, Tiwari A, Sharma S, Bansal R, Gupta V, Gupta A, Luthra-Guptasarma M. Clin Exp Ophthalmol; 2014 Nov; 42(8):745-60. PubMed ID: 24612444 [Abstract] [Full Text] [Related]
2. Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Casaroli-Marano RP, Pagan R, Vilaró S. Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2062-72. PubMed ID: 10440262 [Abstract] [Full Text] [Related]
3. The role of thrombin in proliferative vitreoretinopathy. Bastiaans J, van Meurs JC, Mulder VC, Nagtzaam NM, Smits-te Nijenhuis M, Dufour-van den Goorbergh DC, van Hagen PM, Hooijkaas H, Dik WA. Invest Ophthalmol Vis Sci; 2014 Jul 11; 55(7):4659-66. PubMed ID: 25015355 [Abstract] [Full Text] [Related]
4. Rac1 modulates the vitreous-induced plasticity of mesenchymal movement in retinal pigment epithelial cells. Huang XG, Chen YZ, Zhang ZT, Wei YT, Ma HZ, Zhang T, Zhang SC. Clin Exp Ophthalmol; 2013 Nov 11; 41(8):779-87. PubMed ID: 23331298 [Abstract] [Full Text] [Related]
5. Effect of Robo1 on retinal pigment epithelial cells and experimental proliferative vitreoretinopathy. Huang L, Xu Y, Yu W, Li Y, Chu L, Dong J, Li X. Invest Ophthalmol Vis Sci; 2010 Jun 11; 51(6):3193-204. PubMed ID: 20071679 [Abstract] [Full Text] [Related]
6. Role of retinal pigment epithelial cell β-catenin signaling in experimental proliferative vitreoretinopathy. Umazume K, Tsukahara R, Liu L, Fernandez de Castro JP, McDonald K, Kaplan HJ, Tamiya S. Am J Pathol; 2014 May 11; 184(5):1419-28. PubMed ID: 24656918 [Abstract] [Full Text] [Related]
7. Balance of vascular endothelial growth factor and pigment epithelial growth factor prior to development of proliferative vitreoretinopathy. Dieudonné SC, La Heij EC, Diederen RM, Kessels AG, Liem AT, Kijlstra A, Hendrikse F. Ophthalmic Res; 2007 May 11; 39(3):148-54. PubMed ID: 17534114 [Abstract] [Full Text] [Related]
8. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells. Huang X, Wei Y, Ma H, Zhang S. Biochem Biophys Res Commun; 2012 Mar 09; 419(2):395-400. PubMed ID: 22349509 [Abstract] [Full Text] [Related]
9. Vitreous M2 Macrophage-Derived Microparticles Promote RPE Cell Proliferation and Migration in Traumatic Proliferative Vitreoretinopathy. Song Y, Liao M, Zhao X, Han H, Dong X, Wang X, Du M, Yan H. Invest Ophthalmol Vis Sci; 2021 Sep 02; 62(12):26. PubMed ID: 34554178 [Abstract] [Full Text] [Related]
10. Effect of Methotrexate on an In Vitro Patient-Derived Model of Proliferative Vitreoretinopathy. Amarnani D, Machuca-Parra AI, Wong LL, Marko CK, Stefater JA, Stryjewski TP, Eliott D, Arboleda-Velasquez JF, Kim LA. Invest Ophthalmol Vis Sci; 2017 Aug 01; 58(10):3940-3949. PubMed ID: 28777835 [Abstract] [Full Text] [Related]
11. Evaluation of the Effect of Everolimus on Retinal Pigment Epithelial Cells and Experimental Proliferative Vitreoretinopathy. Kuo HK, Chen YH, Kuo YH, Ke MC, Tseng YC, Wu PC. Curr Eye Res; 2018 Mar 01; 43(3):333-339. PubMed ID: 29182404 [Abstract] [Full Text] [Related]
12. Inverse levels of pigment epithelium-derived factor and vascular endothelial growth factor in the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M. Am J Ophthalmol; 2002 Jun 01; 133(6):851-2. PubMed ID: 12036691 [Abstract] [Full Text] [Related]
13. Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Symeonidis C, Papakonstantinou E, Souliou E, Karakiulakis G, Dimitrakos SA, Diza E. Acta Ophthalmol; 2011 Jun 01; 89(4):339-45. PubMed ID: 19764916 [Abstract] [Full Text] [Related]
14. Inhibition of retinal pigment epithelial cell-induced tractional retinal detachment by disintegrins, a group of Arg-Gly-Asp-containing peptides from viper venom. Yang CH, Huang TF, Liu KR, Chen MS, Hung PT. Invest Ophthalmol Vis Sci; 1996 Apr 01; 37(5):843-54. PubMed ID: 8603869 [Abstract] [Full Text] [Related]
16. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy. Ishikawa K, He S, Terasaki H, Nazari H, Zhang H, Spee C, Kannan R, Hinton DR. Sci Rep; 2015 Nov 10; 5():16386. PubMed ID: 26552368 [Abstract] [Full Text] [Related]
17. Activation of neural progenitor cells in human eyes with proliferative vitreoretinopathy. Johnsen EO, Frøen RC, Albert R, Omdal BK, Sarang Z, Berta A, Nicolaissen B, Petrovski G, Moe MC. Exp Eye Res; 2012 May 10; 98():28-36. PubMed ID: 22465407 [Abstract] [Full Text] [Related]
18. Aggregations of retinal pigment epithelial cells on inferior retinal blood vessels, a clinical sign of early proliferative vitreoretinopathy. Williamson TH, Laidlaw DA, Doyle E. Clin Exp Ophthalmol; 2008 Nov 10; 36(8):744-7. PubMed ID: 19128379 [Abstract] [Full Text] [Related]
20. Chemokine CXCL-1: activity in the vitreous during proliferative vitreoretinopathy. Symeonidis C, Androudi S, Georgalas I, Tzamalis A, Chalvatzis N, Rotsos T, Souliou E, Diza E, Dimitrakos SA. Clin Exp Immunol; 2015 Aug 10; 181(2):338-42. PubMed ID: 25766782 [Abstract] [Full Text] [Related] Page: [Next] [New Search]