These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


242 related items for PubMed ID: 24616910

  • 1. Spiropyran as a reusable chemosensor for selective colorimetric detection of aromatic thiols.
    Shiraishi Y, Yamamoto K, Sumiya S, Hirai T.
    Phys Chem Chem Phys; 2014 Jun 28; 16(24):12137-42. PubMed ID: 24616910
    [Abstract] [Full Text] [Related]

  • 2. Simultaneous nucleophilic-substituted and electrostatic interactions for thermal switching of spiropyran: a new approach for rapid and selective colorimetric detection of thiol-containing amino acids.
    Li Y, Duan Y, Li J, Zheng J, Yu H, Yang R.
    Anal Chem; 2012 Jun 05; 84(11):4732-8. PubMed ID: 22545785
    [Abstract] [Full Text] [Related]

  • 3. Colorimetric sensing of Cu(II) in aqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism.
    Shiraishi Y, Tanaka K, Hirai T.
    ACS Appl Mater Interfaces; 2013 Apr 24; 5(8):3456-63. PubMed ID: 23510458
    [Abstract] [Full Text] [Related]

  • 4. Light regulation of peroxidase activity by spiropyran functionalized carbon nanotubes used for label-free colorimetric detection of lysozyme.
    Song Y, Xu C, Wei W, Ren J, Qu X.
    Chem Commun (Camb); 2011 Aug 28; 47(32):9083-5. PubMed ID: 21748199
    [Abstract] [Full Text] [Related]

  • 5. Self-assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colorimetric detection of fluoride ions.
    Li Y, Duan Y, Zheng J, Li J, Zhao W, Yang S, Yang R.
    Anal Chem; 2013 Dec 03; 85(23):11456-63. PubMed ID: 24164279
    [Abstract] [Full Text] [Related]

  • 6. Selective colorimetric sensing of Co(II) in aqueous media with a spiropyran-amide-dipicolylamine linkage under UV irradiation.
    Shiraishi Y, Matsunaga Y, Hirai T.
    Chem Commun (Camb); 2012 Jun 04; 48(44):5485-7. PubMed ID: 22543809
    [Abstract] [Full Text] [Related]

  • 7. Photo-, thermally, and pH-responsive microgels.
    Garcia A, Marquez M, Cai T, Rosario R, Hu Z, Gust D, Hayes M, Vail SA, Park CD.
    Langmuir; 2007 Jan 02; 23(1):224-9. PubMed ID: 17190508
    [Abstract] [Full Text] [Related]

  • 8. Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication.
    Shiraishi Y, Itoh M, Hirai T.
    Phys Chem Chem Phys; 2010 Nov 07; 12(41):13737-45. PubMed ID: 20877830
    [Abstract] [Full Text] [Related]

  • 9. Colorimetric detection of thiols using a chromene molecule.
    Huo FJ, Sun YQ, Su J, Chao JB, Zhi HJ, Yin CX.
    Org Lett; 2009 Nov 05; 11(21):4918-21. PubMed ID: 19788282
    [Abstract] [Full Text] [Related]

  • 10. Thermoresponsive copolymer containing a coumarin-spiropyran conjugate: reusable fluorescent sensor for cyanide anion detection in water.
    Shiraishi Y, Sumiya S, Manabe K, Hirai T.
    ACS Appl Mater Interfaces; 2011 Dec 05; 3(12):4649-56. PubMed ID: 22043965
    [Abstract] [Full Text] [Related]

  • 11. Spiropyran-conjugated pluronic as a dual responsive colorimetric detector.
    Oh YJ, Nam JA, Al-Nahain A, Lee S, In I, Park SY.
    Macromol Rapid Commun; 2012 Nov 23; 33(22):1958-63. PubMed ID: 22907706
    [Abstract] [Full Text] [Related]

  • 12. Spiropyrans as molecular optical switches.
    Seefeldt B, Kasper R, Beining M, Mattay J, Arden-Jacob J, Kemnitzer N, Drexhage KH, Heilemann M, Sauer M.
    Photochem Photobiol Sci; 2010 Feb 23; 9(2):213-20. PubMed ID: 20126797
    [Abstract] [Full Text] [Related]

  • 13. Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations.
    Shiraishi Y, Shirakawa E, Tanaka K, Sakamoto H, Ichikawa S, Hirai T.
    ACS Appl Mater Interfaces; 2014 May 28; 6(10):7554-62. PubMed ID: 24746341
    [Abstract] [Full Text] [Related]

  • 14. Coupled molecular motions driven by light or chemical inputs: spiropyran to merocyanine isomerisation followed by pseudorotaxane formation.
    Hernández-Melo D, Tiburcio J.
    Chem Commun (Camb); 2015 Dec 25; 51(99):17564-7. PubMed ID: 26478927
    [Abstract] [Full Text] [Related]

  • 15. Transient absorption spectroscopy on spiropyran monolayers using nanosecond pump-probe Brewster angle reflectometry.
    Siebenhofer B, Gorelik S, Lear MJ, Song HY, Nowak C, Hobley J.
    Photochem Photobiol Sci; 2013 May 25; 12(5):848-53. PubMed ID: 23396378
    [Abstract] [Full Text] [Related]

  • 16. Photo-control of the mitotic kinesin Eg5 using a novel photochromic inhibitor composed of a spiropyran derivative.
    Sadakane K, Takaichi M, Maruta S.
    J Biochem; 2018 Sep 01; 164(3):239-246. PubMed ID: 29718428
    [Abstract] [Full Text] [Related]

  • 17. Spiropyran-based liquid crystals: the formation of columnar phases via acid-induced spiro-merocyanine isomerisation.
    Tan BH, Yoshio M, Ichikawa T, Mukai T, Ohno H, Kato T.
    Chem Commun (Camb); 2006 Dec 07; (45):4703-5. PubMed ID: 17109042
    [Abstract] [Full Text] [Related]

  • 18. In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches.
    Plaquet A, Guillaume M, Champagne B, Castet F, Ducasse L, Pozzo JL, Rodriguez V.
    Phys Chem Chem Phys; 2008 Nov 07; 10(41):6223-32. PubMed ID: 18936845
    [Abstract] [Full Text] [Related]

  • 19. Photochromism in cucurbit[8]uril cavity: inhibition of hydrolysis and modification of the rate of merocyanine-spiropyran transformations.
    Miskolczy Z, Biczók L.
    J Phys Chem B; 2011 Nov 03; 115(43):12577-83. PubMed ID: 21932794
    [Abstract] [Full Text] [Related]

  • 20. Fluorescence patterning in films of a photoswitchable BODIPY-spiropyran dyad.
    Deniz E, Tomasulo M, Defazio RA, Watson BD, Raymo FM.
    Phys Chem Chem Phys; 2010 Oct 07; 12(37):11630-4. PubMed ID: 20714479
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.