These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 24633583
21. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Wu X, Zhang L, Jin X, Fang Y, Zhang K, Qi L, Zheng D. Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354 [Abstract] [Full Text] [Related]
22. Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in Kluyveromyces marxianus. Li P, Fu X, Li S, Zhang L. Biotechnol Biofuels; 2018 Jul; 11():207. PubMed ID: 30061929 [Abstract] [Full Text] [Related]
23. Unveiling the super tolerance of Candida nivariensis to oxidative stress: insights into the involvement of a catalase. Qi Y, Qin Q, Liao G, Tong L, Jin C, Wang B, Fang W. Microbiol Spectr; 2024 Feb 06; 12(2):e0316923. PubMed ID: 38206032 [Abstract] [Full Text] [Related]
24. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. Oh EJ, Wei N, Kwak S, Kim H, Jin YS. J Biotechnol; 2019 Feb 20; 292():1-4. PubMed ID: 30615911 [Abstract] [Full Text] [Related]
25. Structural and functional analysis of mutations along the crystallographic dimer interface of the yeast TATA binding protein. Kou H, Irvin JD, Huisinga KL, Mitra M, Pugh BF. Mol Cell Biol; 2003 May 20; 23(9):3186-201. PubMed ID: 12697819 [Abstract] [Full Text] [Related]
26. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Microb Cell Fact; 2010 Oct 25; 9():79. PubMed ID: 20973990 [Abstract] [Full Text] [Related]
27. SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae. Watanabe K, Kokubo T. PLoS One; 2017 Oct 25; 12(11):e0188435. PubMed ID: 29176831 [Abstract] [Full Text] [Related]
28. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Landolfo S, Politi H, Angelozzi D, Mannazzu I. Biochim Biophys Acta; 2008 Jun 25; 1780(6):892-8. PubMed ID: 18395524 [Abstract] [Full Text] [Related]
29. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T. J Biol Chem; 2001 Jan 05; 276(1):395-405. PubMed ID: 11035037 [Abstract] [Full Text] [Related]
30. Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae. Jing H, Liu H, Lu Z, Liuqing C, Tan X. J Microbiol Biotechnol; 2020 Dec 28; 30(12):1876-1884. PubMed ID: 33046676 [Abstract] [Full Text] [Related]
31. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. Zhang K, Tong M, Gao K, Di Y, Wang P, Zhang C, Wu X, Zheng D. J Ind Microbiol Biotechnol; 2015 Feb 28; 42(2):207-18. PubMed ID: 25475753 [Abstract] [Full Text] [Related]
32. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Auesukaree C. J Biosci Bioeng; 2017 Aug 28; 124(2):133-142. PubMed ID: 28427825 [Abstract] [Full Text] [Related]
33. Stress tolerance enhancement via SPT15 base editing in Saccharomyces cerevisiae. Liu Y, Lin Y, Guo Y, Wu F, Zhang Y, Qi X, Wang Z, Wang Q. Biotechnol Biofuels; 2021 Jul 06; 14(1):155. PubMed ID: 34229745 [Abstract] [Full Text] [Related]
34. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering]. Zhang Q, Zhao X, Jiang R, Li Q, Bai F. Sheng Wu Gong Cheng Xue Bao; 2009 Apr 06; 25(4):481-7. PubMed ID: 19637619 [Abstract] [Full Text] [Related]
35. The Continuing SAGA of TFIID and RNA Polymerase II Transcription. Taatjes DJ. Mol Cell; 2017 Oct 05; 68(1):1-2. PubMed ID: 28985500 [Abstract] [Full Text] [Related]
36. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C. Appl Environ Microbiol; 2016 May 15; 82(10):3121-3130. PubMed ID: 26994074 [Abstract] [Full Text] [Related]
37. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Eisenmann DM, Arndt KM, Ricupero SL, Rooney JW, Winston F. Genes Dev; 1992 Jul 15; 6(7):1319-31. PubMed ID: 1628834 [Abstract] [Full Text] [Related]
38. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. Pérez-Gallardo RV, Briones LS, Díaz-Pérez AL, Gutiérrez S, Rodríguez-Zavala JS, Campos-García J. FEMS Yeast Res; 2013 Dec 15; 13(8):804-19. PubMed ID: 24028658 [Abstract] [Full Text] [Related]
39. Molecular genetic dissection of TAF25, an essential yeast gene encoding a subunit shared by TFIID and SAGA multiprotein transcription factors. Kirchner J, Sanders SL, Klebanow E, Weil PA. Mol Cell Biol; 2001 Oct 15; 21(19):6668-80. PubMed ID: 11533254 [Abstract] [Full Text] [Related]
40. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae. Kim IS, Kim YS, Yoon HS. Appl Microbiol Biotechnol; 2013 Apr 15; 97(8):3519-33. PubMed ID: 23053072 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]